AI Safety Index 2025 : un bilan inquiétant de la sécurité de l’IA
Le Future of Life Institute vient de publier l’édition 2025 de son AI Safety Index, un rapport qui évalue les pratiques de sécurité des principales entreprises développant des intelligences artificielles avancées.
Les conclusions sont sans appel : aucune entreprise n’atteint l’excellence en matière de sécurité, et le secteur dans son ensemble reste dangereusement mal préparé face aux risques existentiels que pourraient poser les IA futures.
Un classement général décevant
Sur les huit entreprises évaluées, aucune n’obtient une note maximale. Le meilleur résultat revient à Anthropic avec un simple C+, suivi d’OpenAI (C) et de Google DeepMind (C-). Les autres acteurs ( xAI, Z.ai, Meta, DeepSeek et Alibaba Cloud) obtiennent des notes nettement inférieures, allant de D à F.
Cette situation révèle que même les leaders du secteur se situent tout au plus dans la moyenne. L’industrie de l’IA, malgré ses ambitions affichées de développer des systèmes toujours plus puissants, est loin de disposer des garde-fous nécessaires.
Anthropic : le meilleur élève, mais encore insuffisant
Malgré certaines critiques, Anthropic demeure l’entreprise la plus responsable selon l’index. Elle se distingue par une gouvernance solide (statut de Public Benefit Corporation), des efforts significatifs en recherche de sécurité, un cadre de sécurité relativement développé et une communication transparente sur les risques.
Toutefois, des faiblesses importantes subsistent. Le rapport souligne notamment l’absence récente d’essais sur l’amélioration des capacités humaines dans le cycle d’évaluation des risques, ainsi qu’un passage par défaut à l’utilisation des interactions des utilisateurs pour l’entraînement des modèles.
Les recommandations adressées à Anthropic incluent la formalisation de seuils de risques mesurables, la documentation de mécanismes concrets d’atténuation, l’amélioration de l’indépendance des évaluations externes et la publication d’une version publique robuste de sa politique de lanceurs d’alerte.
OpenAI : des progrès, mais un écart entre discours et pratique
OpenAI se distingue par un processus d’évaluation des risques plus large que certains concurrents et par la publication, unique parmi ses pairs, d’une politique de lanceur d’alerte (whistleblowing) suite à sa médiatisation.
Néanmoins, le rapport appelle l’entreprise à aller plus loin : rendre ses seuils de sécurité réellement mesurables et applicables, accroître la transparence vis-à-vis des audits externes, et surtout aligner ses positions publiques avec ses engagements internes.
Google DeepMind : des avancées timides
DeepMind montre des progrès en matière de transparence, ayant notamment complété le questionnaire de l’AI Safety Index et partagé des éléments de politique interne, comme son dispositif de « whistleblowing ».
Cependant, les fragilités persistent : l’évaluation des risques reste limitée, la validité des tests externes est jugée faible, et le lien entre la détection de risques et le déclenchement de mesures concrètes demeure flou.
Les autres acteurs : des efforts marginaux
Certaines entreprises ont entamé des démarches d’amélioration. Par exemple, xAI a publié un cadre de sécurité pour ses « IA de frontière », et Meta a formalisé un cadre avec seuils et modélisation des risques.
Mais les évaluations restent superficielles ou incomplètes : les couvertures de risque sont restreintes, les seuils peu crédibles, les mécanismes d’atténuation flous ou absents, et la gouvernance interne insuffisante. On note notamment l’absence de politique de lanceurs d’alerte et un manque d’autorité claire en cas de déclenchement de risques.
Pour les entreprises les moins bien notées, notamment DeepSeek et Alibaba Cloud, les progrès constatés sont très modestes, principalement sur la publication de cadres de sécurité ou la participation à des standards internationaux.
Le talon d’Achille : la sécurité existentielle
Le constat le plus alarmant du rapport concerne la sécurité existentielle, c’est-à-dire la capacité à prévenir des catastrophes majeures comme la perte de contrôle ou le mésalignement (misalignment).
Pour la deuxième édition consécutive, aucune entreprise n’obtient une note supérieure à D dans ce domaine. Cela signifie qu’en dépit des ambitions exprimées par certains acteurs de développer une AGI ou une superintelligence dans la décennie, aucune démarche crédible et concrète de planification pour garantir le contrôle ou l’alignement à long terme n’a été mise en place.
Un membre du comité d’experts qualifie ce décalage entre la cadence des innovations techniques et l’absence de stratégie de sécurité de profondément alarmant.
Cette situation pose plusieurs défis majeurs :
Un risque structurel : Si les entreprises continuent à développer des IA sans plans tangibles de contrôle existentiel, nous pourrions nous diriger vers des systèmes dont le comportement échappe à tout encadrement, posant potentiellement un danger global.
Un problème de gouvernance collective : L’absence d’un standard universel, d’un plan de surveillance indépendant ou d’une régulation contraignante rend la sécurité de l’IA dépendante de la bonne volonté des entreprises.
Une dissonance entre ambitions et préparation : Nombreuses sont les acteurs qui visent l’AGI dans la décennie, mais aucun ne démontre qu’il a envisagé, préparé ou traduit cela en mesures concrètes.
Les recommandations du rapport
Face à ce constat, le rapport formule plusieurs recommandations à destination des entreprises, des régulateurs et des décideurs publics.
D’abord, les entreprises doivent dépasser les déclarations d’intention et produire des plans concrets, chiffrés et mesurables, avec des seuils de risque clairs, des mécanismes d’alerte, des protocoles d’atténuation et une vraie gouvernance interne, idéalement avec une surveillance indépendante..
Ensuite, les entreprises devraient s’engager publiquement à respecter des standards communs, par exemple en adoptant l’AI Act dans l’Union Européenne ou un code de bonnes pratiques similaire, et en coopérant à des initiatives globales de gouvernance de l’IA.
Enfin, en cas d’intention réelle de développer des IA très puissantes, les acteurs doivent clarifier leurs objectifs et expliquer comment ils comptent garantir le contrôle, l’alignement et la prévention des risques existentiels.
Limites méthodologiques
Il convient de noter que les évaluations reposent sur des éléments publics ou documentés. Il ne s’agit pas d’audits internes secrets, mais d’observations sur ce que les entreprises ont rendu public ou déclaré. Par conséquent, l’index mesure ce que l’on sait des pratiques, ce qui signifie que des efforts internes invisibles pourraient exister sans être capturés.
De plus, l’édition 2025 couvre des pratiques jusqu’à début novembre 2025 et ne prend pas en compte les événements récents, lancements de nouveaux modèles ou annonces postérieures à cette date.
AI Safety Index 2025 : la méthodologie
Sources d’information Système de notation
Limites reconnues L’édition 2025 couvre les pratiques jusqu’à début novembre 2025 et ne prend pas en compte les événements, lancements de modèles ou annonces postérieures à cette date de collecte. |
The post AI Safety Index 2025 : un bilan inquiétant de la sécurité de l’IA appeared first on Silicon.fr.


















