Vue lecture

RM 3DP - L'impression 3D qui muscle les robots mous

La robotique souple, c'est un peu le Graal pour pas mal de chercheurs. L'idée de fabriquer des machines capables de se faufiler partout ou de manipuler des objets fragiles sans tout casser, ça fait rêver. Sauf que jusqu'à présent, c'était une tannée monumentale à fabriquer. Fallait mouler les pièces, assembler les membranes, sceller les composants... Bref, un boulot de titan pour un résultat parfois imprévisible.

Mais voilà qu'une équipe de Harvard, menée par Jennifer Lewis au sein du Lewis Lab, vient de poser une grosse brique sur l'édifice. Ils ont mis au point une technique baptisée "impression 3D multimatériau rotative" (RM 3DP) qui permet d'encoder la réponse mécanique directement dans la structure. Pour faire simple, au lieu de rajouter des fonctions après coup, vous imprimez une architecture interne qui va dicter comment le robot se déforme une fois sous pression.

Le secret réside dans une buse rotative capable de gérer un placement spatial interne ultra-précis de deux matériaux à la volée. En faisant tourner cette buse pendant l'impression, les chercheurs Jackson Wilt et Natalie Larson arrivent à disposer chaque matériau à l'intérieur du filament déposé (on parle de structures à l'échelle du micron... c'est super minuscule). Et là, c'est un peu comme si vous dessiniez une hélice à l'intérieur d'un tube... mais en 3D et avec des polymères techniques.

Pour la structure, ils utilisent du polyuréthane hyper costaud qui forme une coque durable. Et à l'intérieur, hop, ils injectent un polymère sacrificiel, le poloxamère (qu'on trouve d'ailleurs dans certains produits capillaires), pour remplir les futurs canaux. Une fois que la structure a durci, il suffit de rincer ce gel pour laisser place à des conduits pneumatiques hyper propres. Bon, attention quand même, rincer un gel visqueux dans des canaux microscopiques sans rien péter, ça demande une sacrée maîtrise du process. Mais grâce à ça, ces canaux agissent comme des muscles. Vous envoyez de l'air sous pression dedans et la structure se tord, se plie ou s'étire selon la géométrie prévue au départ.

C'est plutôt chouette car ça permet de passer de la conception à la réalisation en quelques heures au lieu de plusieurs jours. Plus besoin de s'embêter avec des montages complexes, vous ajustez les paramètres de l'imprimante et voilà. Pour la démonstration, ils ont imprimé un actuateur en spirale qui s'ouvre comme une fleur et une pince capable de saisir des objets délicats. Tout ça en un seul processus d'impression continu pour la partie structurelle, même si le post-traitement reste obligatoire pour libérer les canaux.

Perso, c'est assez prometteur par exemple pour le futur de la chirurgie ou pour créer des dispositifs d'assistance qui s'adaptent vraiment au corps humain.

Maintenant, reste à voir la durabilité du bouzin sur des milliers de cycles, mais on n'arrête pas le progrès, comme dirait l'autre.

Source

  •  

Un PC gaming dans une machine à écrire

Tout le monde veut construire le PC le plus rapide, le plus cher, le plus RGB possibeuuule sauf que Prototype, un YouTuber bien allumé, a décidé quand à lui de prendre le problème à l'envers... en intégrant un PC gaming complet dans une Smith-Corona 210 des années 70. Oui, une bonne vieille machine à écrire électrique de 8 kg.

Vous prenez cette vieille Smith-Corona électrique, vous virez tout ce qui sert à rien, vous gardez le chariot, les marteaux et la clochette (oui, la clochette là), et vous fourrez une carte mère mini-ITX, une alim SFX et une carte graphique low-profile à l'intérieur. Et hop, vous avez un PC qui tape littéralement vos emails !

Sauf que c'est pas exactement comme monter un PC dans un boitier Corsair. Le mec a d'abord dû tout démonter, en fait y'a facilement 200 pièces mécaniques là-dedans, des leviers, des ressorts, des marteaux... et il fallait rien péter. Le problème c'est que l'espace disponible une fois le ménage fait... c'est RIEN DU TOUT. Juste quelques centimètres de marge entre le châssis et les mécanismes, pas plus.

Et pour le clavier, c'est là que ça devient tordu car pas question de brancher un clavier USB lambda... non non, les vraies touches de la machine à écrire doivent fonctionner comme un vrai clavier HID. Du coup, il a fallu concevoir un PCB custom en partant de zéro. Quel courage !!

En gros, chaque touche est câblée avec un switch mécanique Cherry et une diode 1N4148 dans une matrice 8×7, le tout piloté par un Arduino Pro Micro qui traduit les coordonnées ligne/colonne en caractères via QMK. Le design du circuit, il l'a envoyé se faire fabriquer chez JLCPCB à Guangdong en Chine et tout devait passer au millimètre près.

Pour le boîtier, il a d'abord tenté la photogrammétrie. En gros, vous photographiez l'objet sous tous les angles, un logiciel crache un modèle 3D en .STL, et ensuite vous retouchez ça dans SolidWorks pour imprimer une version modifiée en 3D . Sauf que le scan a complètement foiré (en fait la photogrammétrie sur du plastique brillant, ça marche moyen... sauf si vous matifiez la surface avant), du coup il a retracé le mesh à la main dans son logiciel de CAO. C'était des heures de modélisation en plus.

Côté assemblage du PCB, 52 touches à souder une par une avec leurs diodes, soit plusieurs heures de soudure au fer à 350°C, penché sur le plan de travail. Et là, surprise : celui qui a designé le circuit (c'est lui ^^) avait oublié 4 trous pour les pins de l'Arduino. Bon... La solution ? Couper les pins de l’Arduino à la pince… moi j’aurais plutôt percé les trous manquant à la Dremel !! La méthode la rache, ça marche toujours !

Ensuite, il a branché le firmware... et a dû recoder la matrice clavier à la main (bienvenue dans le monde réel).

Le premier test du clavier custom, 52 touches soudées à la main

Mais son vrai coup de génie, c'est le servo. En effet, il a intégré un deuxième Arduino qui lit les frappes clavier via le port série et fait bouger un servomoteur SG90 attaché aux marteaux. Du coup, quand vous tapez sur une touche, non seulement ça écrit sur l'écran, mais ça bouge AUSSI le chariot de la machine à écrire. Sans oublier la petite clochette qui sonne en fin de ligne, comme en 1975.

Et ça marche !! C'est fou ! Les machines à écrire USB , on connaissait déjà le concept. Mais là c'est un cran au-dessus puisque le PC complet tient à l'intérieur, avec un écran monté sur le chariot. Le mec le dit lui-même dans sa vidéo... c'est probablement le truc le plus débile qu'il ait jamais fait.

Bref, vivement la partie 2 pour voir le résultat final. En attendant, si l'envie vous prend de transformer du vieux matos en truc improbable , vous savez que c'est faisable...

Source

  •  

L’impression 3D en menuiserie – Guide complet

La menuiserie traditionnelle connaît depuis quelques années une transformation profonde grâce aux technologies numériques. Cette technologie permet aujourd’hui de créer des pièces complexes, des gabarits de précision et des prototypes rapidement, ouvrant ainsi de nouvelles perspectives créatives et fonctionnelles.

Les applications concrètes de l’impression 3D en menuiserie

Création de gabarits et guides de coupe

L’une des utilisations les plus pratiques de l’impression 3D concerne la fabrication de gabarits sur mesure. Ces outils permettent de reproduire des coupes identiques avec une précision millimétrique, un atout majeur pour la production en série ou la restauration de pièces anciennes.

Exemple pratique : Pour réaliser des assemblages à queue d’aronde parfaitement identiques, vous pouvez imprimer un gabarit en PLA ou en PETG qui guidera votre défonceuse. Modélisez le gabarit sur un logiciel gratuit comme Tinkercad ou Fusion 360, en prévoyant des bords surélevés de 5 à 8 mm pour guider le roulement de la fraise. Le temps d’impression sera d’environ 3 à 5 heures selon la taille, mais ce gabarit sera réutilisable des dizaines de fois.

Pièces de remplacement et éléments décoratifs

L’impression 3D excelle dans la reproduction de petites pièces manquantes ou cassées, particulièrement utile en restauration de meubles anciens. Les rosaces décoratives, les embouts de tiroirs, les cache-vis ornementaux ou les charnières plastiques peuvent être recréés fidèlement.

Alors que Votre fabricant de fenêtre en Haute-Garonne et d’autres artisans spécialisés continuent de perfectionner leur savoir-faire ancestral, l’impression 3D s’impose progressivement comme un outil complémentaire précieux pour tous les professionnels du bois et de la menuiserie.

Cas d’usage : Sur une commode Louis XV, une rosace en bronze est manquante. Après avoir scanné ou mesuré l’élément symétrique encore présent, vous pouvez modéliser puis imprimer la pièce en résine ou en filament effet bronze. Une fois imprimée, poncez légèrement la surface avec du papier grain 400 puis 800, appliquez une sous-couche et une peinture métallisée. Le résultat sera visuellement très proche de l’original à une fraction du coût.

Systèmes de serrage et de maintien personnalisés

Les menuisiers ont souvent besoin de dispositifs de serrage spécifiques pour des pièces aux formes atypiques. L’impression 3D permet de créer des mâchoires de protection sur mesure, des cales d’angle ou des supports de ponçage adaptés.

Conseil pratique : Imprimez des mâchoires de protection en TPU (filament flexible) pour vos serre-joints. Ce matériau absorbe les chocs et protège efficacement les surfaces délicates lors du collage. Prévoyez une épaisseur de 8 à 10 mm et des encoches pour un maintien parfait sur vos serre-joints existants. Le TPU se imprime idéalement à 230°C avec une vitesse réduite de 30 mm/s.

Choix des matériaux selon les applications

Le PLA : polyvalent et économique

Le PLA (acide polylactique) reste le filament de prédilection pour débuter. Biodégradable et facile à imprimer, il convient parfaitement aux gabarits, prototypes et outils de mesure utilisés en atelier. Sa température d’impression basse (190-220°C) le rend accessible sur toutes les imprimantes.

Attention : Le PLA ramollit au-delà de 60°C. Évitez de l’utiliser pour des pièces exposées à la chaleur (près de radiateurs, en plein soleil) ou soumises à des contraintes mécaniques importantes sur le long terme.

Le PETG : robustesse et résistance

Pour des pièces fonctionnelles devant résister aux chocs et aux variations de température, le PETG (polyéthylène téréphtalate glycolisé) s’impose. Plus résistant que le PLA, il supporte mieux l’humidité et conserve ses propriétés mécaniques jusqu’à 80°C.

Application recommandée : Les butées d’ajustement pour portes de placard, les guides de tiroirs ou les entretoises dans les systèmes coulissants gagnent à être imprimées en PETG. Paramétrez votre imprimante à 240°C pour la buse et 80°C pour le plateau, avec une vitesse de 50 mm/s. Activez un taux de remplissage de 40% minimum pour garantir la solidité.

Le TPU : pour la flexibilité

Ce filament élastomère thermoplastique imite le caoutchouc. Parfait pour les joints, les amortisseurs, les protections et toutes les pièces nécessitant de la souplesse.

Conseils techniques pour réussir vos impressions

Préparation et modélisation

Avant d’imprimer, la phase de conception détermine la qualité finale. Quelques règles essentielles permettent d’éviter les déconvenues :

  1. Respectez les angles minimaux : Les surplombs ne doivent pas dépasser 45° sans support. Au-delà, prévoyez des structures de soutien ou réorientez la pièce.
  2. Épaisseur des parois : Pour des pièces fonctionnelles, prévoyez au minimum 2 mm d’épaisseur. Les parois fines (moins de 1 mm) sont fragiles et difficiles à imprimer proprement.
  3. Ajoutez des congés : Les angles vifs concentrent les contraintes. Un rayon de 2 à 3 mm renforce considérablement la résistance mécanique.
  4. Prévoyez les tolérances : Pour des pièces devant s’emboîter, ajoutez 0,2 à 0,4 mm de jeu. Cette tolérance compense les imprécisions et la dilatation thermique.
Astuce de pro : Avant d’imprimer une série complète, réalisez toujours un prototype à échelle réduite ou imprimez uniquement la zone critique (assemblage, fixation). Cela vous permettra de valider les dimensions et d’ajuster les paramètres sans gaspiller matériau et temps.

Paramétrage de l’impression

Le succès d’une impression repose sur des réglages fins adaptés à chaque projet :

  • Hauteur de couche : 0,2 mm offre un bon compromis vitesse/qualité pour la majorité des pièces fonctionnelles. Passez à 0,1 mm pour les détails fins ou les surfaces visibles.
  • Remplissage : 20% suffisent pour les prototypes, montez à 40-60% pour les pièces mécaniques soumises à contraintes.
  • Vitesse d’impression : Ralentissez à 40-50 mm/s pour les premières couches et les détails complexes. Les impressions rapides (80 mm/s et plus) conviennent aux formes simples.
  • Température du plateau : 60°C pour le PLA, 80°C pour le PETG. Un plateau bien chauffé garantit l’adhérence et évite le warping (déformation).

Post-traitement pour un rendu professionnel

Une pièce imprimée brute présente souvent des défauts qu’un post-traitement simple peut corriger :

Technique de lissage : Pour éliminer les lignes de couches visibles sur le PLA, utilisez du papier abrasif en progression (grain 120, 240, 400, puis 800). Terminez par un polissage avec un chiffon microfibre légèrement humide. Pour un effet miroir, vous pouvez appliquer une résine époxy en fine couche ou utiliser la technique de lissage aux vapeurs d’acétone (uniquement pour l’ABS, pas le PLA).

Intégration bois et plastique imprimé

Assemblages mixtes efficaces

Combiner le bois traditionnel avec des éléments imprimés ouvre des possibilités créatives intéressantes. Plusieurs méthodes d’assemblage ont fait leurs preuves :

  • Insertion thermique : Utilisez des inserts filetés en laiton chauffés au fer à souder. Ils s’enfoncent dans le plastique et créent un filetage solide pour vis à bois.
  • Collage structural : Les colles époxy bi-composants adhèrent excellemment au bois et au plastique. Poncez légèrement les deux surfaces (grain 120) pour améliorer l’accroche.
  • Emboîtements mécaniques : Concevez des pièces imprimées avec des tenons s’insérant dans des mortaises du bois. Prévoyez 0,3 mm de jeu pour un ajustement serré.
Recommandation : Pour des assemblages durables entre bois et pièces imprimées en PETG, privilégiez la colle polyuréthane (type colle à bois Gorilla). Elle compense les différences de dilatation entre matériaux et résiste à l’humidité. Appliquez une fine couche sur les deux surfaces, pressez pendant 1 heure minimum avec des serre-joints.

Idées de projets mixtes bois-impression 3D

Projet 1 – Système d’étagères modulaires : Créez une structure en bois massif (hêtre ou chêne) avec des tablettes de 18 mm d’épaisseur. Imprimez en PETG des équerres d’angle personnalisées intégrant des LED, des ports USB ou des crochets intégrés. Ces connecteurs imprimés transforment une étagère classique en meuble intelligent et évolutif.
Projet 2 – Boîte à outils personnalisée : Fabriquez le coffret en contreplaqué de bouleau (12 mm). Imprimez des organisateurs internes sur mesure avec des compartiments ajustés à vos outils spécifiques. Ajoutez des clips de maintien imprimés en TPU pour sécuriser ciseaux, gouges et tournevis. Le résultat combine la beauté du bois avec la fonctionnalité optimale du plastique moulé.

Investissement et rentabilité

Budget pour débuter

L’accessibilité financière de l’impression 3D en fait un investissement raisonnable pour un atelier de menuiserie :

  • Imprimante 3D FDM entrée de gamme : 200-400€ (Creality Ender 3, Prusa Mini+)
  • Imprimante semi-professionnelle : 800-1500€ (Prusa MK4, Bambu Lab P1S)
  • Filaments : 20-30€/kg selon le type (PLA, PETG, TPU)
  • Consommables : Buses, plaques de verre, rubans adhésifs : 50-100€/an
Calcul de rentabilité : Un gabarit de précision pour assemblages coûte 80-150€ chez les fournisseurs spécialisés. En l’imprimant vous-même, le coût matière ne dépasse pas 5-8€. Dès la cinquième pièce utilitaire fabriquée, l’imprimante est rentabilisée. Sans compter le gain de temps sur des pièces spécifiques impossibles à trouver dans le commerce.

Limites et précautions

Malgré ses nombreux avantages, l’impression 3D présente certaines contraintes à connaître :

  • Résistance structurelle limitée : Les pièces imprimées ne remplaceront jamais le bois massif pour les applications structurelles. Réservez-les aux fonctions secondaires ou aux prototypes.
  • Taille limitée : La plupart des imprimantes grand public ont un volume d’impression de 20x20x20 cm. Pour des pièces plus grandes, il faudra concevoir des assemblages multiples.
  • Temps de fabrication : Une pièce complexe peut nécessiter 8 à 24 heures d’impression. Anticipez vos besoins et lancez les impressions pendant les temps morts.
  • Finitions nécessaires : Aucune pièce imprimée n’est parfaite en sortie de plateau. Prévoyez systématiquement un temps de finition (ébavurage, ponçage, perçage).

Perspectives d’avenir

L’impression 3D continue d’évoluer rapidement. Les nouvelles technologies comme l’impression multi-matériaux, les filaments chargés en fibres (carbone, verre) ou les imprimantes à résine haute résolution ouvrent des perspectives encore plus larges pour la menuiserie créative et technique.

L’intégration de capteurs imprimés, de circuits électroniques flexibles ou de matériaux intelligents pourrait bientôt permettre de créer des meubles connectés, des systèmes de verrouillage personnalisés ou des surfaces interactives. La menuiserie de demain sera hybride, combinant tradition artisanale et innovation technologique.

Pour aller plus loin : Rejoignez des communautés en ligne comme Thingiverse, Printables ou Cults3D pour accéder à des milliers de modèles gratuits adaptés à la menuiserie. Partagez vos propres créations et bénéficiez de l’expérience collective. Les forums spécialisés comme ceux de Prusa ou les groupes Facebook dédiés offrent un support technique précieux pour résoudre les problèmes courants.

En conclusion, l’impression 3D ne remplace pas les compétences traditionnelles du menuisier mais les augmente considérablement. Elle permet de gagner en précision, en créativité et en efficacité, tout en réduisant les coûts pour les petites séries et les pièces personnalisées. Que vous soyez artisan établi ou amateur passionné, cette technologie mérite d’être explorée et intégrée progressivement à votre pratique.

L’article L’impression 3D en menuiserie – Guide complet est apparu en premier sur Raspberry Pi France.

  •  

Régénérer le Silicagel : méthode simple pour un filament 3D sec

Des sachets de Silicagel ? On en trouve partout… et on les jette trop vite !Pourtant, ces petits absorbeurs d’humidité sont de véritables alliés pour garder vos bobines de filament bien au sec. Saviez-vous qu’ils sont réutilisables des dizaines de fois avec un simple four de cuisine ?Voici comment leur redonner une seconde vie – […]

Cet article Régénérer le Silicagel : méthode simple pour un filament 3D sec a été publié en premier sur Framboise 314, le Raspberry Pi à la sauce française.....

  •  

Novinov : un filament PLA biosourcé au Miscanthus 100 % français

Imprimer en 3D tout en respectant la planète ? C’est le pari de Novinov, une jeune pousse française qui propose un filament PLA innovant, renforcé aux fibres de Miscanthus, une plante cultivée localement et sans intrants. Baptisé Novifil™ PLM-20, ce filament 100 % biosourcé, sans colorant ni adjuvant pétrochimique, est naturellement doré et pensé pour s’adapter […]

Cet article Novinov : un filament PLA biosourcé au Miscanthus 100 % français a été publié en premier sur Framboise 314, le Raspberry Pi à la sauce française.....

  •  
❌