Vue normale

Sommet de l’IA 2026 : quelques points-clés du rapport scientifique « officiel »

10 février 2026 à 17:32

L’IA générative n’est plus seulement utilisée pour développer des malwares : elle alimente aussi leur exécution.

En novembre 2025, Google avait proposé une analyse à ce sujet. Il avait donné plusieurs exemples. Dont celui d’un dropper VBScript faisant appel à l’API Gemini pour l’aider à obscurcir son code.

L’analyse est reprise en source dans l’International AI Safety Report 2026. Il s’agit du rapport « officiel » préfigurant le Sommet de l’IA qui se tiendra en Inde du 16 au 20 février. Comme celui de l’an dernier, il donne un instantané de la compréhension scientifique des IA généralistes, sous l’angle de la sûreté. Parmi les experts impliqués, il y a, côté français, Jonathan Collas  conseiller industrie et numérique au SGDSN. Et Gaël Varoquaux (Inria), chef de projet pour le consortium Scikit-learn.

Pour cette édition, la définition des « risques émergents » a été restreinte. Il s’agit désormais de ceux « qui naissent à la frontière des capacités de l’IA ». Une manière, nous explique-t-on, de mieux se poser en complément à des initiatives telles que le panel scientifique de l’ONU sur l’IA.

Des IA plus persuasives, mais une influence « non démontrée à l’échelle »

Depuis l’an dernier, les systèmes dit de raisonnement se sont répandus. Les performances en mathématiques, code et sciences en ont particulièrement bénéficié. Côté méthodes d’entraînement, le rapport met en avant la distillation, avec l’exemple de DeepSeek-R1, dont les chaînes de pensée ont nourri DeepSeek-V3.

Des avancées, il y en a aussi eu sur le contenu que génèrent les IA. Constat, dans les grandes lignes : il est devenu plus difficile à détecter. Pour l’illustrer, le rapport cite, entre autres, les observations de chercheurs de l’université de Californie à San Diego sur un test de Turing avec GPT-4o. Dans 77 % des cas, les participants ont considéré comme d’origine humaine un texte en fait créé par le LLM.
Une autre expérience citée émane d’UC Berkeley. Elle a porté sur le clonage de voix. Dans 80 % des cas, les participants ont pris l’IA pour le locuteur d’origine.

Autre étude d’UC Berkeley, autre aspect : les capacités de persuasion dont les IA font preuve. Elles se montrent parfois plus efficaces que l’humain. Les preuves en ce sens « se sont accumulées » ces derniers mois, précise le rapport, qui en dresse un tableau récapitulatif. Centré sur les effets négatifs (propagande politique, notamment), il témoigne cependant aussi d’effets potentiellement positifs, dont la réduction de l’adhésion aux théories du complot.

L’efficacité du contenu IA par rapport au contenu que crée l’humain n’est toutefois pas démontrée à l’échelle, nous explique-t-on. Cela peut s’expliquer par le coût de distribution et par l’effet de balance que suscite, en conditions réelles, l’exposition à des points de vue antagonistes.

Cybersécurité : pas encore d’IA à tout faire, même si la détection de vulnérabilités est acquise

Sur le volet cyber, la difficulté à établir des relations de cause à effet complique l’estimation du rôle de l’IA dans la sévérité et l’échelle des attaques.

Les LLM se révèlent en tout cas performants pour découvrir des vulnérabilités. À ce sujet, on nous mentionne le dernier DARPA AI Cyber Challenge. Lors de cette compétition, un système agentique s’est hissé dans les hauteurs du classement en découvrant 77 % des failles.

Malgré ces progrès, aucune attaque intégralement autonome n’a pour le moment été signalée. Au moins un incident s’en est néanmoins approché. Il a impliqué les services d’Anthropic. Celui-ci s’en est fait l’écho en novembre 2025, estimant que l’attaquant avait automatisé, par ce biais, 80 à 90 % du travail, l’humain n’intervenant que pour des décisions critiques.

De manière générale, le rapport invite à ne pas surestimer le potentiel actuel des IA. Ne serait-ce que parce que la plupart des évaluations n’englobent que des compétences isolées ; pas des attaques de bout en bout. Jusqu’ici, les outils à disposition ont surtout accéléré ou mise à l’échelle des méthodes existantes.

L’évolution de la balance entre usages offensifs et défensifs dépendra des choix sur l’accès aux modèles, le financement de la recherche et les normes de déploiement. Le manque de méthodes standards d’assurance qualité pour les outils IA, par exemple, complique leur adoption dans des secteurs critiques. Alors que dans le même temps, les acteurs de la menace n’ont pas cette contrainte…

Conscience situationnelle ne rime pas avec perte de contrôle

Quant aux dysfonctionnements et aux risques que cela implique, il y a, dans le rapport, à boire et à manger.

Des références à plusieurs études rappellent que des modèles ont démontré des capacités de conscience situationnelle. Autrement dit, une aptitude à détecter l’environnement dans lequel ils évoluent. De là la possibilité de se comporter différemment dans un scénario d’évaluation que dans le monde réel. Ou à dégrader artificiellement ses performances pour éviter des restrictions de déploiement. Ou encore à contourner sciemment des garde-fous pour remplir à tout prix un objectif, tout en le niant par après.

Le risque d’une perte de contrôle sur le long terme demeure cependant faible, faute de capacités à maintenir un fonctionnement autonome sur la durée.
Certes, cette durée s’est allongée dans quelques disciplines, à commencer par le codage. Mais un seul grain de sable peut faire dérailler la machine, comme l’illustre une étude universitaire axée sur la perturbation des systèmes langage-vision à partir d’une pop-up.

Le biais d’automatisation s’amplifie

Concernant l’impact de l’IA sur le marché du travail, le rapport cite des études – au Danemark et aux États-Unis – qui n’ont pas démontré de corrélation forte. Mais il en mentionne aussi plusieurs ayant conclu à un déclin de la demande en profils juniors.

L’amplification du « biais d’automatisation » apparaît plus claire. Déjà prononcé avec les systèmes automatisés « non IA », le phénomène se perpétue au contact des LLM. Le rapport cite deux études qui en témoignent. L’une démontre la tendance des utilisateurs d’outils d’assistance à l’écriture à adopter le point de vue que suggère le modèle. L’autre met en lumière le processus des raccourcis mentaux : sur une tâche d’annotation assistée, les participants ont moins corrigé les suggestion erronées venant d’une IA lorsque cela exigeait un effort supplémentaire.

Illustration générée par IA

The post Sommet de l’IA 2026 : quelques points-clés du rapport scientifique « officiel » appeared first on Silicon.fr.

❌