Vue normale

Reçu — 16 décembre 2025

Databricks atteint une valorisation de 134 milliards $

16 décembre 2025 à 16:28

Qui a parlé d’une bulle spéculative sur l’IA ? Databricks annonce avoir levé plus de 4 milliards de $ lors d’un tour de financement de Série L, portant sa valorisation à 134 milliards $.
Le tour de financement a été mené par Insight Partners, Fidelity Management & Research Company et J.P. Morgan Asset Management.  La présence de gestionnaires d’actifs majeurs comme BlackRock et Blackstone témoigne d’un intérêt croissant des grandes institutions financières pour les investissements dans le secteur de l’intelligence artificielle.

Une partie des fonds sera utilisée pour permettre aux employés de procéder à des ventes secondaires d’actions. Ali Ghodsi a également indiqué au Wall Street Journal que l’entreprise prévoit de créer des milliers de nouveaux postes, notamment des chercheurs en IA, pour développer un laboratoire d’IA qui n’emploie actuellement qu’une centaine de personnes.

Une croissance soutenue

L’investissement soutiendra également de futures acquisitions dans le domaine de l’IA et l’approfondissement de la recherche.

Avec cette nouvelle levée de fonds, Databricks dépasse désormais largement la valorisation ( 75 milliards)  de son concurrent coté en bourse Snowflake.

Databricks, fondée en 2013 à San Francisco, affiche des résultats financiers impressionnants avec un chiffre d’affaires annualisé de 4,8 milliards $ au troisième trimestre, soit une progression de plus de 55% en un an. En septembre dernier, ce taux s’établissait à 4 milliards $.

L’entreprise compte ainsi plus de 700 clients, sur plus de 20 000, générant un revenu annuel supérieur à un million. Cette levée de fonds intervient quelques mois seulement après qu’elle ait levé 1 milliard de dollars pour une valorisation de 100 milliards $

Trois axes stratégiques pour les applications intelligentes

Le nouveau capital servira à accélérer le développement de trois offres stratégiques :

> Lakebase, présentée comme la première base de données Postgres sans serveur conçue spécifiquement pour l’ère de l’IA. Lancé il y a six mois, ce produit compte déjà des milliers de clients et enregistre une croissance de revenus deux fois plus rapide que le produit d’entreposage de données de Databricks.

> Databricks Apps, qui permet de créer et déployer des applications de données et d’IA avec rapidité et sécurité.

> Agent Bricks, qui aide les organisations à créer et mettre à l’échelle facilement des agents de haute qualité sur leurs données.

The post Databricks atteint une valorisation de 134 milliards $ appeared first on Silicon.fr.

Red Hat renforce la sécurité de son offre IA avec Chatterbox Labs

16 décembre 2025 à 15:53

Red Hat rachète Chatterbox Labs, un spécialiste des garde-fous de sécurité pour l’intelligence artificielle générative. Le montant de l’opération n’est pas communiqué.

Fondée en 2011 et basée à Londres avec un bureau à New York, Chatterbox Labs propose des capacités de test de sécurité automatisées et personnalisées, fournissant des métriques de risque quantitatives.

La technologie de Chatterbox Labs s’articule autour de trois piliers :

  • AIMI pour l’IA générative : des métriques de risque quantitatives indépendantes pour les grands modèles de langage
  • AIMI pour l’IA prédictive : validation de toute architecture IA sur des critères clés incluant robustesse, équité et explicabilité
  • Garde-fous : identification et correction des invites non sécurisées, toxiques ou biaisées avant la mise en production des modèles

Sécuriser l’IA agentique de nouvelle génération

L’approche est agnostique des modèles, permettant de valider données et modèles quelle que soit leur origine. Selon Steven Huels, vice-président de l’ingénierie IA et de la stratégie produit chez Red Hat, l’intégration de Chatterbox Labs permettra de fournir une plateforme open source complète où la sécurité est intégrée dès le départ.

Chatterbox Labs a mené des travaux sur la sécurité holistique des agents IA, incluant la surveillance des réponses des agents et la détection des déclencheurs d’action des serveurs MCP. Ces travaux s’alignent avec la feuille de route de Red Hat pour le support de Llama Stack et MCP.

Cette acquisition est la deuxième opération de Red Hat dans le domaine de l’IA en un an. En novembre 2024, l’éditeur avait racheté Neural Magic, spécialisé dans l’optimisation des modèles d’IA pour processeurs et GPU standards. Cette acquisition a été finalisée en janvier 2025.

The post Red Hat renforce la sécurité de son offre IA avec Chatterbox Labs appeared first on Silicon.fr.

Bases de données cloud : l’abondance de l’offre devient un défi

16 décembre 2025 à 15:17

Chez les principaux fournisseurs de bases de données cloud, il n’est plus si rare que des produits se chevauchent.

La synthèse du dernier Magic Quadrant dédié à ce marché en témoigne. La majorité des « leaders » (5 sur 9) ont droit à une remarque à ce sujet :

  • Alibaba Cloud
    Chevauchement entre AnalyticDB et Hologres (analytique) comme entre DMS et DataWorks (intégration de données).
  • AWS
    Grand choix de SGBD et d’options d’intégration… au prix de chevauchements et de conflits.
  • Google
    Plusieurs solutions pour Postgre (Cloud SQL, AlloyDB, Spanner) entre lesquelles il faut faire la balance.
  • IBM
    Chevauchements sur la partie entrepôt de données, entre les offres Db2 Warehouse, Neterra watsonx.data.
  • Microsoft
    Concurrence entre Azure Synapse, Microsoft Fabric et Azure Databricks.

Gérer les coûts reste un défi

Autre sujet largement partagé parmi les « leaders » : la gestion des coûts.

Elle est difficile chez AWS faute de tarification unifiée entre services.
Elle l’est aussi pour beaucoup de clients de Databricks, malgré des avancées sur l’outillage FinOps.
Chez Google, elle a tendance à se complexifier avec l’intégration de nouvelles fonctionnalités.
Concernant Oracle, la clientèle se plaint toujours des prix et de la difficulté de contractualisation, même si la tendance s’atténue avec le passage au cloud et son modèle de facturation à l’usage.
Concernant Snowflake, Gartner a un jugement plus spécifique : le côté « user-friendly » est susceptible de favoriser le développement d’un état d’esprit « black box », et par là même de limiter la capacité à optimiser les workloads.

Plusieurs de ces fournisseurs avaient déjà été épinglés à ce sujet il y a un an, dans l’édition précédente de ce Magic Quadrant.
Databricks, à cause de la difficulté à prédire les coûts avec le modèle fondé sur des unités de consommation.
Google, parce que le suivi des dépenses pouvait se révéler délicat, a fortiori lorsqu’on interfaçait aux bases de données des services fondés sur des unités de consommation.
Oracle, perçu, de par son historique, comme un fournisseur aux offres onéreuses.
Alibaba, chez qui la variété des modèles de pricing, combinée à une facturation découplée pour certaines ressources au nom de la flexibilité, pouvait s’avérer difficile à maîtriser.

20 fournisseurs, 9 « leaders »

D’une année à l’autre, les critères à respecter ont peu évolué. Il fallait toujours, entre autres, gérer au moins un cas d’usage parmi :

  • Transactionnel
  • Transactions « légères » (gros volumes à haute concurrence et basse latence)
  • Gestion d’état d’applications
  • Data warehouse
  • Lakehouse
  • Analyse d’événements

Une fois encore, Gartner n’a évalué que les offres managées, fournies en cloud public ou privé. Il n’a pas pris en compte les bases de données hébergées sur du IaaS.

Les 20 fournisseurs classés sont les mêmes que l’an dernier. Et les 9 « leaders » d’alors le sont restés. Dans l’ordre alphabétique : Alibaba Cloud, AWS, Databricks, Google, IBM, Microsoft, MongoDB, Oracle et Snowflake.

Sur l’axe « exécution », reflétant la capacité à répondre à la demande, la situation est la suivante :

Rang Fournisseur Évolution annuelle
1 AWS =
2 Google =
3 Microsoft + 1
4 Oracle – 1
5 Databricks =
6 Snowflake + 1
7 MongoDB – 1
8 IBM + 2
9 Alibaba Cloud – 1
10 InterSystems – 1
11 Huawei Cloud =
12 SAP =
13 Teradata =
14 Cloudera =
15 Couchbase + 3
16 SingleStore + 1
17 EDB + 3
18 Redis – 3
19 Neo4j – 3
20 Cockroach Labs – 1

Sur l’axe « vision », reflétant les stratégies :

Rang Fournisseur Évolution annuelle
1 Google =
2 Databricks + 3
3 Microsoft – 1
4 Oracle – 1
5 AWS – 1
6 Snowflake + 2
7 Alibaba Cloud + 3
8 IBM – 1
9 SAP – 3
10 Teradata – 1
11 MongoDB =
12 Cloudera =
13 InterSystems + 2
14 Neo4j =
15 Huawei Cloud + 1
16 EDB + 4
17 Couchbase =
18 SingleStore =
19 Redis – 6
20 Cockroach Labs – 1

Alibaba Cloud, distingué pour son approche « data + IA »…

Les principales offres d’Alibaba Cloud sur ce marché sont PolarDB et ApsaraDB (transactionnel), AnalyticDB et MaxCompute (analytique), Tair et Lindorm (clé-valeur).

L’a dernier, le groupe chinois avait été salué pour sa présence sectorielle importante et différenciée, le développement de son écosystème de partenaires et le poids de sa communauté open source.

Cette année, Gartner apprécie la tarification, jugée attractive. Ainsi que la fiabilité de l’architecture serverless. Désormais étendue à tous les SGBD, elle se distingue par son architecture découplant calcul, mémoire et stockage en environnement hybride. Bon point également pour l’approche « data + IA » qui permet de développer et de déployer des applications en n’utilisant que des technologies d’Alibaba Cloud.

… mais pas pour la configuration de PolarDB

L’an dernier, Gartner avait pointé, au-delà de la gestion des coûts, le risque géopolitique associé à Alibaba Cloud. Ainsi que la disponibilité encore limitée de ses servies hors de l’Asie (moins de régions et de zones de disponibilité que la concurrence).

Cette année encore, la faible présence hors Asie est signalée. Elle peut se traduire par un moins grand nombre d’intégrations d’outils tiers et de ressources en anglais (documentation, formation, support). Attention aussi à la configuration de PolarDB, jugée complexe par les nouveaux utilisateurs, notamment sur l’équilibre coût/performance et la gestion du stockage multicouche. Il faut y ajouter les chevauchements de produits sus-évoqués.

AWS a un catalogue d’une ampleur sans égale…

Aurora, Redshift, DynamoDB et SageMaker font partie des principaux produits d’AWS sur ce marché.

L’an dernier, Gartner avait salué la couverture fonctionnelle d’AWS et sa capacité à créer du liant entre ses solutions. Il avait aussi noté l’exhaustivité des partenariats et de la présence géographique.

Ce dernier point vaut toujours et s’assortit d’un bon historique de disponibilité de l’infrastructure ainsi que d’une approche « proactive » de dialogue avec le client pour l’optimisation des coûts. AWS a, plus globalement, un catalogue d’une ampleur sans égale sur ce marché, avec SageMaker comme point central de gouvernance data/IA.

… mais des dépendances pour l’orchestration hybride

L’intégration entre les services d’AWS peut être complexe, avait souligné Gartner l’an dernier. Le cabinet américain avait aussi constaté que la prise en charge des déploiements hybrides/multicloud était limitée malgré la disponibilité de connecteurs natifs et le support de moteurs comme Spark (les clients tendent à utiliser des orchestrateurs tiers, avait-il expliqué).

Ce dernier constat est toujours d’actualité : beaucoup de clients dépendent de solutions tierces pour l’orchestration hybride/multicloud. S’y ajoutent les deux éléments sus-évoqués : gestion des coûts difficile et chevauchements entre produits.

Databricks, rapide pour innover…

Outre Data Intelligence Platform (qui inclut Unity Catalog), Databricks propose du data warehouse avec Databricks SQL, du transactionnel avec Lakebase, ainsi que de l’intégration et de l’engineering avec Lakeflow.

L’an dernier, Gartner avait salué les investissements dans la GenAI (dont l’acquisition de MosaicML), traduits par le développement de ses propres LLM. Il avait aussi donne un bon point au catalogue Unity (qui venait d’être basculé en open source) et au format Delta Lake (concurrent d’Iceberg).

Cette année, Databricks est salué pour sa « vision lakehouse », bien qu’il ne soit plus seul sur ce marché. Il l’est aussi pour sa cadence d’innovation, entre la composante Agent Bricks (qui a reçu des fonctionnalités importantes presque tous les mois), l’acquisition de Tabular (qui a accompagné la prise en charge d’Iceberg sur tout le portefeuile) et l’introduction de capacités low code dans Lakeflow. Bon point également pour l’engagement sur des standards ouverts (Delta Lake, Iceberg, Spark, Postgre…) qui favorisent la portabilité.

… mais pas si simple à prendre en main

L’an dernier, Gartner avait pointé le manque d’intuitivité de l’UI, qui changeait fréquemment tout en manquant de documentation et de capacités low code. Il y avait ajouté l’aspect FinOps, sus-évoqué.

Cette année, le cabinet américain met un bémol à la logique d’ouverture : certains clients s’inquiètent d’un éventuel verrouillage au niveau de l’orchestration et de Delta Live Tables (devenu Lakeflow Spark Declarative Pipelines). Il souligne par ailleurs la tendance des clients à juger que l’usage de la solution exige un haut niveau de compétence technique. En parallèle, le sujet FinOps reste valable (voir ci-dessus).

Google, bien positionné sur l’IA…

Entre autres produits positionnés sur ce marché, Google a Spanner, BigQuery, AlloyDB, Cloud SQL, Firestore, Memorystore et Bigtable.

L’an dernier, Gartner avait salué les contributions open source (à PostgreSQL en particulier). Il avait fait de même pour les avancées dans la GenAI (intégration de Gemini + support transversal de la recherche vectorielle via LangChain) et pour la fondation data/IA unifiée avec Dataplex pour la gouvernance.

Cette fondation data/IA a à nouveau droit à un bon point ; dans les grandes lignes, pour les mêmes motifs. Gartner note plus globalement la capacité de l’offre SGBD de Google à couvrir les cas d’usage dans l’IA agentique. Et apprécie en particulier l’exhaustivité des modèles de données pris en charge par Spanner (relationnel, clé-valeur, graphe, vectoriel).

… mais moins sur le partage de données

Le réseau de partenaires doit encore se développer, avait estimé Gartner l’an dernier. Il avait aussi pointé l’aspect FinOps et souligné que Google proposait moins d’options que la concurrence pour l’intégration native d’applicaitons et le master data management.

Cette année, outre la gestion des coûts et les chevauchements sus-évoqués, un point de vigilance va à la marketplace de données et aux capacités de partage. Elle se révèlent moins avancées que chez certains concurrents, malgré des améliorations sur les clean rooms et l’interopérabilité entre clouds.

IBM étend sa présence multicloud…

Les principaux SGBD cloud d’IBM sont Db2 (transactionnel + analytique) et watsonx.data (lakehouse).

L’an dernier, Big Blue s’était distingué sur sa stratégie sectorielle (solutions spécifiques adaptées sur la gouvernance, la sécurité et la conformité). Ainsi que sur sa capacité à combiner les expertises en open source et en data management au service des déploiements hybrides. Son offre est bien adaptée aux applications critiques, avait ajouté Gartner.

Cette année encore, la stratégie sectorielle est saluée. L’extension de la présence cloud l’est aussi (mise à disposition de Db2 chez les hyperscalers et acquisition de DataStax, qui a une forte présence multicloud). Bon point également pour l’approche « bien définie » d’IBM concernant l’intégration des SGBD dans les frameworks de data management.

… mais a toujours du mal à faire passer son message

IBM a du mal à se différencier dans la communication, par ailleurs pas uniforme entre équipes commerciales, avait expliqué Gartner l’a dernier. Il avait aussi rappelé que le déploiement géographique de l’offre n’atteignait pas encore celui des autres hyperscalers.

Les difficultés de communication restent d’actualité, occasionnant un certain manque de notoriété sur le segment. En parallèle, IBM demeure perçu comme un vendeur « legacy », ce qui est susceptible de détourner certains acheteurs. Gartner y ajoute, comme sus-évoqué, les chevauchements entre certains produits.

Une offre exhaustive chez Microsoft…

Entre autres produits, Microsoft évolue sur ce marché avec Azure SQL Database, Azure Database pour PostgreSQL et MySQL, ainsi qu’Azure Cosmos DB.

L’an dernier, Gartner avait salué l’exhaustivité de l’offre et le niveau d’intégration avec les autres services Microsoft. Il avait aussi apprécié les possibilités d’usage de l’IA pour le data management. Et les avancées sur la gestion du multicloud, exemplifiées par l’interconnexion Azure-Oracle comme par les « raccourcis » dans OneLake pour les analyses fédérées.

Bon point cette année encore pour l’exhaustivité de l’offre, qui « gère presque tous les modèles de données et cas d’usage sectoriels ». L’engagement de Microsoft sur PostgreSQL est également salué. Comme les innovations sur la partie IA (embeddings in-database, indexation de vecteurs, jonctions entre Copilot et Fabric…).

… mais une offre Fabric qui manque encore de maturité

Le chevauchement de certaines offres avait déjà été signalé l’an dernier, en sus de craintes des clients sur la pérennité d’Azure Synapse Analytics et d’Azure Database face à Microsoft Fabric. Ce dernier manquait encore de maturité, avait expliqué Gartner : les capacités d’intégration, de gouvernance et de gestion des métadonnées étaient moins « robustes » que chez d’autres « leaders ». Le déploiement pouvait par ailleurs se révéler complexe, en particulier pour le DR, la sécurité et la gestion des coûts.

Outre le chevauchement de certains produits, Gartner pointe à nouveau le manque de maturité de Microsot Fabric. Les inquiétudes des clients touchent autant aux fonctions data warehouse que gouvernance, entre souveraineté, dimensionnement des ressources, prix, gestion des métadonnées et data quality. Attention aussi aux investissements consentis pour intégrer le transactionnel dans Fabric : sur le court terme, ils peuvent engendrer des enjeux de performance.

MongoDB demeure un standard pour le modèle document…

Outre son édition communautaire et son produit sur site (Enterprise Advanced), MongoDB propose son SGBD Atlas chez AWS, Google et Microsoft.

L’an dernier, Gartner avait salué une offre « bien considérée » pour ses capacités de traitement à haut volume, son élasticité et la flexibilité du schéma. Il avait aussi souligné la souplesse et la rapidité d’implémentation, contribuant à la popularité auprès des développeurs.

Ce dernier élément vaut toujours et engendre un vivier de compétences d’autant plus grand. S’y ajoute la richesse des options de déploiement, accentuée par un programme de partenariats jugé « robuste ». MongoDB est plus globalement parvenu à établir une forme de standard pour qui souhaite un modèle orienté document.

… mais manque d’un storytelling sur la convergence transactionnel-analytique

Si MongoDB associe transactionnel et analytique, son offre se limite à du non relationnel, avait signalé Gartner l’an dernier. La concurrence s’accentue de la part de fournisseurs de SGBD qui incluent l’approche document en plus d’autres modèles, avait-il souligné ; sans compter ceux qui proposent une compatibilité MongoDB.

Cette remaruqe sur la concurrence accrue reste valable. Le cabinet américain y ajoute la courbe d’apprentissage nécessaire pour prendre en main le modèle MongoDB. Et le manque d’un storytelling complet l’intégration du transactionnel et de l’analytique.

Oracle, salué pour sa richesse fonctionnelle…

Autonomous AI Lakehouse, Autonomous JSON Database et Exadata Database Service font partie des SGBD cloud au catalogue d’Oracle.

L’an dernier, Gartner avait salué l’exhaustivité de l’offre (fonctionnalités + support de modèles modèles de données et de l’architecture lakehouse). Ainsi que le niveau de gestion du multicloud (offres Database@ + interconnexion avec les principaux hyperscalers) et la capacité à diffuser rapidement des nouveautés (GenAI, low code, consensus RAFT).

Cette année encore, la richesse fonctionnelle est saluée (bases de données distribuées, recherche vectorielle, framework agentique…). La diversité des options de déploiement l’est aussi. Comme l’adéquation de l’offre d’oracle aux applications critiques.

… mais peu adopté pour les déploiements lakehouse

Oracl reste perçu comme onéreux et a du travail pour « cloudifier » sa base client, avait noté Gartner l’an dernier. Il avait aussi appelé les acheteurs à s’assurer de bien interpréter l’approche « une base de données pour tout » et ce qu’elle impliquait en matière de livraison de fonctionnalités.

Cette dernière remarque est reconduite : vigilance sur cette approche, qui s’oppose aux architecture combinant les SGBD et les systèmes de data management. La question du prix – sus-évoquée – reste sensible et les clients continuent à prioriser des produits concurrents pour les déploiements lakehouse.

Snowflake a amélioré sa couverture fonctionnelle…

L’an dernier, Snowflake s’était distingué par son UI adaptée à divers profils d’utilisateurs, sa prise en charge de multiples formats sur la couche de stockage et l’extension de l’architecture lakehouse avec Iceberg et Polaris.

Cette année encore, Gartner donne un bon à l’UI. Il relève aussi l’extension fonctionnelle de l’offre (data engineering avancé via Openflow, ML/IA avec Snowpark et Cortex AI, support de Postgre apporté par l’acquisition de Crunchy Data). Et l’amélioration de la scalabilité avec les entrepôts de génération 2 (meilleur rapport qualité-prix que la gen 1 pour les workloads complexes).

… mais reste focalisé sur le batch et l’analytique

L’an dernier, Gartner avait pointé une prise en charge limitée des scénarios hybrides. Il y avait ajouté la complexité dans le partage des données entre organisations utilisatrices de Snowflake et les défis d’usabilité que posait l’intégration avec le stockage sur site via les tables externes.

Ces deux derniers aspect demeurent. D’une part, la performance n’est pas la même avec les tables externes qu’avec le stockage natif ou les tables Iceberg. De l’autre, sur le partage, il est nécessaire de bien planifier des éléments tels que les permissions, le repartage et les restrictions régionales. Gartner y ajoute l’aspect FinOps (voir ci-dessus). Et le fait que l’architecture est focalisée sur le batch et l’analytique plutôt que sur le transactionnel ou le temps réel (même s’il existe les tables hybrides et une intégration avancée de PostgreSQL).

Illustration générée par IA

The post Bases de données cloud : l’abondance de l’offre devient un défi appeared first on Silicon.fr.

La chasse aux sorcières de Washington pour imposer sa doctrine IA

16 décembre 2025 à 10:10

Washington accentue la chasse aux textes de loi qui vont contre sa doctrine en matière d’intelligence artificielle.

Son « plan d’action IA » publié cet été avait ouvert la voie. Il prévoyait notamment que les agences du gouvernement fédéral ayant des programmes de financement de l’IA prennent en compte le « climat réglementaire » des États américains. Et qu’elles limitent ces financements dans le cas où un régime serait susceptible de compromettre leur efficacité.

La Maison Blanche promettait plus globalement de réviser ou d’abroger tout texte « entravant inutilement le déploiement de l’IA ». En première ligne étaient alors les ordonnances définitives, les décrets exécutoires et les injonctions de la FTC (Federal Trade Commission, qui fait appliquer le droit de la consommation).

Le mantra du « biais idéologique »

Le mode opératoire se précise à la faveur d’un ordre exécutif (équivalent d’un décret présidentiel) que Donald Trump a signé la semaine passée. Dans le viseur, en particulier, les lois qui « exigent d’intégrer des biais idéologiques dans les modèles ». Référence est faite à une « loi au Colorado ». Il s’agit probablement du SB24-205 (« Consumer Protections for Artificial Intelligence »), qui doit entrer en application le 1er février 2026. Le postulat : en interdisant la « discrimination algorithmique », le texte pourrait forcer les modèles à produire de faux résultats afin d’éviter un « traitement différencié » de minorités.

L’ordre exécutif cible aussi les lois qui ont une portée extraterritoriale. Et qui, par là même, compromettraient les échanges commerciaux entre États.

Une task force gouvernementale pour contester les textes présumés illégaux

Ce travail d’élagage doit contribuer à « entretenir et renforcer la domination mondiale des États-Unis dans l’IA à travers un cadre législatif national le moins pénible possible ».

Un groupe de travail sera chargé de contester (challenge) les lois en contradiction avec cet objectif. Le procureur général a 30 jours – à compter de la signature de l’ordre exécutif – pour l’établir.

Cette contestation pourra se faire, notamment, au motif d’inconstitutionnalité, de prévalence d’une loi fédérale… ou de « toute présomption d’illégalité de la part du procureur général ».

La perspective d’une coupure de financements fédéraux

Le secrétaire au Commerce a 90 jours pour identifier les lois jugées problématiques et qui devraient être signalées au groupe de travail. Il lui faudra lister au minimum celles qui « requièrent que les modèles IA altèrent leurs outputs véridiques (truthful) » ou qui sont susceptibles de contraindre les développeurs ou les déployeurs à divulguer des informations au mépris de la Constitution, à commencer par le premier amendement (liberté d’expression).

Dans le même délai, le secrétaire au Commerce devra émettre une notice relative aux financements dans le cadre du BEAD (Broadband Equity Access and Deployment, programme fédéral à 42,5 Md$). Les fonds non alloués aux objectifs principaux de déploiement d’infrastructure ne seraient pas accessibles aux États qui promulguent ou envisagent de promulguer des lois jugées problématiques.
En parallèle, départements exécutifs et agences sont invités à examiner leurs programmes de subventions pour déterminer s’ils peuvent les conditionner à l’absence de ces mêmes lois – ou à un engagement contraignant à ne pas les faire appliquer.

Face à l’altération des outputs, Washington avence… le droit de la consommation

La FCC (Federal Communications Commission) a quant à elle 90 jours pour lancer une procédure visant à déterminer s’il faut adopter une norme fédérale de divulgation d’informations relatives aux modèles d’IA. Elle prévaudrait sur les lois des États américains.

Dans le même délai, la FTC doit émettre une déclaration de principe sur l’application du droit à la consommation aux IA. Il lui faudra plus précisément expliquer les circonstances dans lesquelles les textes qui exigent d’altérer les outputs ne prévalent pas sur la loi fédérale interdisant les pratiques commerciales injustes ou trompeuses.

Au bout, il y aurait une recommandation de cadre législatif fédéral uniforme. Celui-ci prévaudrait sur les législations IA jugées problématiques. Mais pas, en revanche, sur celles qui touchent à la protection de l’enfance, aux infrastructures de calcul et de données ainsi qu’à la commande publique.

Illustration générée par IA

The post La chasse aux sorcières de Washington pour imposer sa doctrine IA appeared first on Silicon.fr.

Reçu — 15 décembre 2025

Intégration de données : les hyperscalers s’imposent en vase clos

15 décembre 2025 à 11:35

À la faveur des migrations cloud, les CSP gagnent en visibilité sur l’intégration de données.

Gartner en avait fait part fin 2024 dans la synthèse de son Magic Quadrant dédié à ces solutions. Il avait souligné que cette visibilité accrue se traduisait par un gain notable de part de marché.

Un an plus tard, le constat vaut toujours. En parallèle, une autre typologie de fournisseur se distingue par sa croissance : les acteurs « de niche » qui proposent des produits plus spécialisés… ou plus abordables (cost-effective).

Sans Informatica, SAP n’est plus un « leader »

Gartner mène son évaluation sur deux axes. L’un prospectif (« vision »), centré sur les stratégies (sectorielle, commerciale, marketing, produit…). L’autre porté sur la capacité à répondre effectivement à la demande (« exécution » : expérience client, performance avant-vente, qualité des produits-services…).

La situation sur l’axe « exécution » :

Rang Fournisseur Évolution annuelle
1 Microsoft + 1
2 Informatica – 1
3 AWS + 1
4 Oracle – 1
5 Google + 3
6 Denodo + 3
7 IBM =
8 Fivetran + 2
9 Ab Initio – 4
10 Qlik – 4
11 Matillion =
12 Confluent =
13 SAP =
14 SnapLogic + 1
15 Sage Software + 2
16 Workato nouvel entrant
17 CData Software + 1
18 K2view + 1
19 Boomi nouvel entrant
20 Precisely – 4

Sur l’axe « vision » :

Rang Fournisseur Évolution annuelle
1 Informatica =
2 IBM + 1
3 Oracle – 1
4 Microsoft =
5 Ab Initio =
6 SnapLogic + 1
7 Denodo + 2
8 AWS + 5
9 Qlik – 1
10 K2view + 2
11 Google =
12 Workato nouvel entrant
13 SAP – 3
14 Matillion + 1
15 Fivetran + 2
16 Safe Software =
17 CData Software + 2
18 Confluent – 4
19 Boomi nouvel entrant
20 Precisely =

9 des 10 « leaders » de l’an dernier le restent. Dans l’ordre alphabétique : Ab Initio, Denodo, Google, IBM, Informatica, Microsoft, Oracle et Qlik.
SAP rétrograde chez les « visionnaires » en conséquence d’un recul sur l’axe « exécution ». Gartner n’a pas pris en compte l’acquisition d’Informatica, finalisée le 8 décembre 2025.

Ab Initio salué sur l’automatisation et l’agentique…

Le produit pris en considération se nomme Ab Initio Data Platform.

L’an dernier, Ab Initio avait été salué pour sa prise en charge des cas d’usage complexes de gestion des données dans les grandes entreprises. Gartner avait aussi apprécié l’expérience client, portée par une approche de la relation en direct. Ainsi que l’exploitation d’un graphe de connaissances facilitant la connexion des indicateurs business aux modèles physiques de données.

Cette année, Ab Initio est salué pour la stabilité de son équipe dirigeante et de sa clientèle historique. Il l’est aussi pour son support et la résilience de sa plate-forme. Bon point également pour son approche d’automatisation à base de métadonnées et de templates. Ainsi que pour son framework agentique AI Central (compréhension des données, création de pipelines, interaction en langage naturel…).

… mais pas sur l’UI, ni la tarification

Paramétrage et mise à niveau peuvent être chronophages, en plus d’une courbe d’apprentissage importante pour les équipes techniques, avait souligné Gartner l’an dernier. La clientèle a tendance à trouver les prix élevés et la gestion des accords de licence, difficile, avait-il ajouté. Tout en notant la faible pénétration sur les usages « simples » de type ETL autonome.

La remarque sur la courbe d’apprentissage reste d’actualité. Gartner y ajoute un UI jugée peu intuitive et un support communautaire minimal. Ab Initio manque plus globalement de visibilité par rapport aux autres « leaders » (en particulier sous le prisme de la production de contenu). Sa tarification est par ailleurs complexe et les déploiements on-prem manquent de souplesse.

AWS a réduit l’écart avec la concurrence…

La plupart des services que Gartner a englobés dans son évaluation – Glue, Kinesis, Athena, etc. – sont inclus dans la plate-forme de data management Amazon SageMaker.

L’an dernier, Amazon se distinguait sur la notion d’écosystème, du « zero-ETL » entre S3, Redshift et Aurora à la connexion Glue-SageMaker en passant par DataZone pour la gestion des métadonnées. Gartner avait aussi apprécié la gestion de multiples profils d’utilisateurs (Glue associe notebooks, GUI, interface tableur et NLP avec Amazon Q). Ainsi que l’architecture serverless, accueillie favorablement par la clientèle, en particulier pour l’efficacité de l’autoscaling.

Cette année encore, Gartner souligne le niveau d’intégration avec le reste d’AWS – en mettant l’accent sur la gouvernance partagée. Il salue aussi la robustesse de l’offre pour la préparation de données à destination des cas d’usage GenAI. Et note qu’AWS a su réduire l’écart avec la concurrence sur des aspects comme les données en flux et les transformations « avancées ».

… mais reste centré sur son écosystème

L’an dernier, Gartner avait relevé que Glue pouvait présenter des coûts élevés, surtout sur de gros volumes de données. Et que malgré la possibilité de se connecter à des bases de données externes, il ne proposait pas le niveau d’intégration des pure players – en plus de ne pas être déployable sur d’autres clouds publics. Autre limite : la complexité d’usage sur les cas avancés de data engineering exigeant du code (marge de progression, entre autres, sur l’intégration avec Apache Iceberg et la gestion des jobs Spark).

De l’impossibilité de déployer Glue sur d’autres clouds publics, on passe, cette année, à une remarque plus générale : l’offre est AWS-centric. D’une part, le catalogue de connecteurs vers d’autres destinations est limité. De l’autre, s’il est plus fourni côté sources, la configuration manque souvent de souplesse. S’y ajoute une tarification perçue comme élevée, avec des hausses de prix parfois inattendues et des outils de gestion des coûts dont la clientèle demande une amélioration. Vigilance également sur la maintenance des pipelines. Elle est souvent complexe et chronophage, et la remédiation automatisée est limitée.

Denodo se distingue toujours sur la virtualisation des données…

Le produit pris en considération est Denodo Platform.

L’an dernier, Denodo se distinguait par la notoriété de sa marque sur la partie virtualisation de données. Gartner avait aussi souligné sa croissance « nettement supérieure » à celle du marché et l’extension de son réseau de partenaires. Il avait également attribué un bon point à l’expérience client, en premier lieu sur la partie fonctionnelle.

Cette année encore, la notoriété sur la virtualisation de données vaut un bon point à Denodo. Son contrôle d’accès granulaire et l’évolution de son catalogue de données en une marketplace de produits data lui en valent d’autres. Gartner y ajoute les briques Denodo Assistant (description et étiquetage automatiques des données sensibles) et DeepQuery (réponse aux questions des métiers à l’appui d’un modèle de raisonnement).

… mais demeure peu utilisé pour certains types d’intégrations

Les produits Denodo sont rarement utilisés pour les intégrations de type bulk/batch ou réplication, surtout en présence de SLA de performance, avait souligné Gartner l’an dernier. Il avait aussi mentionné l’absence d’accélérateurs ou de modèles sectoriels, ainsi que la difficulté à optimiser et maintenir les déploiements distribués.

La première remarque vaut toujours (et s’applique aussi à l’intégration de données en flux). En corrélation, Gartner note le besoin fréquent d’outils complémentaires pour couvrir tous les types d’intégration et les cas d’usage complexes. Il évoque aussi la difficulté à résoudre les problèmes d’intégration de logiciels tiers et à paramétrer le SSO sur les déploiements complexes ; ainsi que l’inadéquation du monitoring natif.

Un Google largement distingué sur l’IA…

Gartner a pris en considération les produits Cloud Data Fusion (pipelines visuels), Datastream (réplication), Dataflow (données en flux), Cloud Composer (orchestration) et BigQuery Data Engineering Agent (enrichissement et automatisation des pipelines dans BigQuery).

L’an dernier, Google se distinguait par le niveau d’intégration de Gemini dans son offre. Autre point fort : les capacités de gouvrnance à l’échelle (découverte automatique, lignage, exploitation des métadonnées…). Gartner jugeait par ailleurs les produits plus faciles à utiliser que la moyenne pour les data engineers – et assortis d’une documentation exhaustive.

Cette année, la remarque sur Gemini devient une remarque sur la capacité à couvrir les cas d’usage IA, à l’appui de l’intégration avec Vertex AI. Gartner apprécie aussi l’adaptation à de multiples profils (pipelines visuels, notebooks, code…) et les capacités de l’agent de data engineering pour BigQuery (création de pipelines, résolution de problèmes…), même s’il ne s’étend pas aux pipelines implémentés avec les autres outils d’intégration de données de Google.

… mais lui aussi centré sur son écosystème

L’an dernier, Gartner avait fait le constat d’une offre Google-centric ; et appelé à la vigilance quiconque n’était pas pleinement engagé dans cet écosystème. Il avait aussi pointé le manque d’unification du portefeuille (qui souhaite plusieurs modes d’intégration aura potentiellement besoin de plusieurs outils).

La vision Google-centric est toujours d’actualité : les produits sont conçus et vendus essentiellement pour un usage dans l’écosystème Google Cloud. Le portefeuille reste lui aussi fragmenté : en 10 outils en l’occurrence, avec une UX et des capacités fonctionnelles d’autant plus inégales.

Données non structurées et déploiements hybrides, points forts d’IBM…

L’offre prise en considération est watsonx.data integration. Incluant DataStage (bulk/batch), Data Replication et StreamSets (données en flux), elle est fournie au sein de la plate-forme watsonx.data.

L’an dernier, Gartner avait salué la « vision » globale d’IBM, entre gestion des déploiements hybrides, exploitation des métadonnées actives et mise à contribution de l’IA watsonx. Il avait aussi souligné l’étendue de sa présence géographique et de son réseau de partenaires. Ainsi que l’acquisition de StreamSets, qui avait amélioré la capacité à gérer les pipelines complexes en environnement multicloud.

Cette année, l’un des bons points va à l’architecture de la solution, qui permet de découpler conception du pipeline et style d’intégration, ce dernier pouvant être sélectionné à l’exécution et déployé en hybride/multicloud. Autre point fort : la gestion des données non structurées, à l’appui notamment des modèles Granite et Slate. Gartner mentionne aussi le niveau d’intégration avec la composante watsonx.data intelligence, qui inclut catalogue, lignage et gestion de produits data.

… au contraire de la tarification

À cas d’usage comparables, les solutions d’IBM sont plus chères que la concurrence, avait souligné Gartner. Le cabinet américain avait aussi fait remarquer que la mise en action de l’élasticité et des capacités de gouvernance pouvait impliquer un paramétrage complexe. Il avait également pointé un manque de clarté sur la portabilité des licences DataStage et sur les bonnes pratiques associées à la migration vers le Cloud Pak for Data.

Cette année encore, IBM est plus cher que la concurrence ; ou reste tout du moins perçu comme tel. Le modèle fondé sur des « unités de ressources » y contribue. L’offre apparaît par ailleurs rarement dans les shortlists et dans les projets d’architectures data « modernes », sauf pour qui utilise déjà DataStage. Elle est également peu prise en considération par les organisations qui recherche des outils spécialisés ne faisant pas partie d’une offre intégrée (virtualisation ou réplication de données, par exemple), en particulier lorsque la source n’est pas un mainframe ou une base de données IBM.

Informatica, à nouveau salué pour la maturité de son offre…

L’offre prise en considération est Cloud Data Integration, qu’Informatica distribue au sein de sa plate-forme IDMC (Intelligent Data Management Cloud).

L’an dernier, Informatica avait eu des bons points pour son moteur IA CLAIRE et pour sa vision data fabric. Ainsi que pour son approche de la préparation des données pour les cas d’usage IA. Et plus globalement pour la maturité de son offre (variété des connecteurs, des cas d’usage couverts et des styles d’intégration).

Cette année encore, Gartner évoque une « vision claire pour l’IA », entre gestion du non structuré, brique agentique (Agent Engineering) et modules CLAIRE Copilot et CLAIRE GPT pour la gestion des pipelines. La notoriété de la marque, l’écosystème de partenaires et le vivier de compétences disponibles sont d’autres points forts. La maturité de l’offre l’est à nouveau, pour les mêmes raisons que l’an dernier.

… mais toujours plus sous pression

L’an dernier, Gartner avait expliqué à quel point la percée des CSP était un « défi » à la croissance d’Informatica. Il avait aussi noté que la tarification à l’usage pouvait ne pas s’avérer avantageuse pour qui n’utiliserait que partiellement le produit. Et souligné qu’une grande partie de la clientèle était encore sur l’offre PowerCenter, sachant que la migration vers IDMC peut se révéler chère et chronophage.

Cette dernière remarque vaut toujours. Et cette année, elle est assortie d’un constat : des clients « explorent des solutions alternatives »… Informatica voit par ailleurs baisser sa part de marché, en premier lieu au profit des hyperscalers. On restera de plus vigilant concernant la roadmap et le pricing maintenant qu’Informatica appartient à Salesforce.

La vision data fabric fait encore mouche chez Microsoft…

Gartner a pris en considération Data Factory (inclus dans Microsoft Fabric), ainsi qu’Azure Data Factory, SQL Server Integration Services, Power Query et Azure Synapse Link.

L’an dernier, Microsoft avait eu un bon point pour l’adoption significative de Fabric, autant par des clients nouveaux qu’existants. Gartner avait aussi salué le niveau d’intégration avec le reste du cloud Azure et l’injection des capacités de Copilot.

Cette année encore, l’adoption de Microsoft Fabric – et de la composante Data Factory – est saluée ; comme l’écosystème de partenaires et la cadence de développement de fonctionnalités. Le module Real-Time Intelligence (traitement des données en flux) l’est aussi, pour son accessibilité et son intuitivité.

… qui se centre lui aussi sur son écosystème

Comme d’autres hyperscalers, Microsoft a un produit centré sur son écosystème, avait fait remarquer Gartner l’an dernier. Il avait aussi évoqué une satisfaction utilisateur relativement faible à propos du support. Et affirmé que les capacité de réplication et de virtualisation manquaient encore de maturité – pour ces raisons, l’offre avait tendance à n’être envisagée que pour des déploiements simples.

Le manque de maturité de l’offre reste signalé cette année. Des fonctionnalités pourraient ne pas convenir à un usage en prod, estime Gartner (exemples donnés : les nouveautés sur le CI/CD et la copie de données). Les capacités on-prem sont limitées, le focus étant clairement sur le cloud, ajoute-t-il. Tout en réaffirmant que l’offre est Microsoft-centric ; autrement dit, efficace surtout pour qui est déjà dans Azure ou Microsoft Fabric.

Oracle garde l’avantage GoldenGate…

Les principales offres prises en compte sont GoldenGate et OCI Data Integration. Gartner a aussi pris en considération Oracle Data Integrator et Oracle Autonomous Database Data Studio.

L’an dernier, Gartner avait souligné l’approche « agnostique » d’Oracle, OCI jouant le rôle de hub entre CSP (partage de métadonnées, FinOps…). Il avait aussi apprécié les capacités de GoldenGate sur la réplication et le streaming. Et souligné le niveau de prise en charge des scénarios complexes, dont l’intégration en environnement hybride.

Ce dernier point est toujours valable, avec un accent sur le niveau de support des déploiements on-prem. Même chose pour les capacités de GoldenGate sur la réplication et le streaming. Gartner y ajoute les fonctionnalités IA, en tête desquelles un framework agentique.

… mais suscite de moins en moins d’intérêt

Oracle tend à apparaître moins fréquemment dans les shortlists que les autres acteurs de ce marché, avait noté Gartner l’an dernier. Ses solutions restent perçues comme chères, avait-il ajouté. Et en dépit du catalogue de connecteurs, elles sont plus souvent envisagées lorsque ses bases de données sont la source ou la destination des intégrations.

Robuste sur l’intégration des données opérationnelles, GoldenGate éclipse souvent le portefeuille touchant aux données analytiques, estime Gartner. La tarification reste perçue comme onéreuse, d’autant plus qu’elle manque de transparence. Oracle suscite plus globalement un intérêt moindre que les années précédentes et son taux de rétention client est sous la moyenne du marché.

Plusieurs briques robustes chez Qlik…

Trois solutions ont été prises en considération : Qlik Talend Cloud (la principale), Talend Data Fabric et Qlik Replicate.

L’an dernier, Gartner avait crédité Qlik de bons points pour la robustesse de ses briques de réplication et de préparation de données. Il avait fait de même pour le catalogue de connecteurs et pour la partie gouvernance, renforcée par l’acquisition de Talend.

Cette année, le cabinet américain affirme que la brique réplication est « parmi les meilleures du marché ». Il salue plus globalement une « vision holistique » de la gestion des données, portée par une emphase sur la gouvernance et un engagement sur l’architecture lakehouse après l’acquisition d’Upsolver. Autre point fort : la robustesse du produit sur le bulk/batch et la transformation de données.

… mais un ralentissement de la R&D depuis l’acquisition de Talend

L’acquisition de Talend a potentiellement pesé sur la R&D, qui a ralenti, avait postulé Gartner l’an dernier. Il avait aussi affirmé que Qlik pouvait gagner en maturité sur la virtualisation de données. Et qu’il avait peu communiqué au sujet de l’augmentation de ses prix.

Ce dernier point vaut toujours ; et il a surpris des clients, l’absence d’une tarification publique ajoutant à leur frustration. Quant au ralentissement de la R&D, il s’est confirmé, engendrant une incertitude sur la capacité de Qlik à suivre le rythme du marché. Attention aussi aux capacités d’automatisation limitées, tant pour la conception de pipelines que l’optimisation des transformations de données.

Illustration © alphaspirit – Shutterstock

The post Intégration de données : les hyperscalers s’imposent en vase clos appeared first on Silicon.fr.

Reçu — 12 décembre 2025

{ Tribune Expert } – Agents IA : les grands bénéfices des petits modèles de langage

12 décembre 2025 à 13:45

Il y a quelque temps, le dirigeant de l’une des plus grandes entreprises tech au monde expliquait dans un podcast que les organisations qui utilisent l’intelligence artificielle (IA) pour accroître leur productivité et stimuler l’économie seront les véritables gagnants de cette révolution.

Cette déclaration met en lumière les avancées concrètes observées avec l’IA générative, en particulier avec les petits modèles de langage (SLM) et les agents d’IA. Moins visibles que les grands modèles de langage (LLM) qui équipent sur les ordinateurs portables et les smartphones, les SLM offrent des avantages remarquables et des applications concrètes pour les équipes terrain, notamment dans des secteurs comme celui de la distribution.

Une sélection de SLM dédiés, intégrée à une suite d’agents d’IA, peut être optimisée de manière efficace pour l’automatisation intelligente de tâches spécifiques. Ces capacités d’IA permettent aux équipes terrain de capturer facilement le contexte de leurs workflows, puis de l’intégrer directement dans un terminal mobile doté d’agents d’IA afin d’améliorer la productivité, l’expérience client, et renforcer la visibilité des actifs.

Rendre l’IA réelle

Les SLM sont également idéaux pour des capacités d’IA embarquée (on-device AI). Ils apportent cette technologie directement sur des terminaux mobiles, transportables et autres terminaux aux ressources limitées, permettant ainsi des fonctionnalités telles que les assistants vocaux hors ligne et la traduction en temps réel.

Les agents d’IA basés sur des SLM permettent de mettre en œuvre des applications d’edge computing, en traitant les données au plus près de leur source, ce qui réduit la latence et la consommation de bande passante.

Cette technologie offre des avantages significatifs aux équipes terrain dans la distribution, les entrepôts et la logistique, en améliorant la prise de décision en temps réel et l’efficacité opérationnelle. Voici quelques exemples d’agents IA générés par des SLM :

1. Agent de connaissances : capable d’interagir en langage naturel avec les supports de formation et les procédures opérationnelles standards pour faciliter l’intégration des collaborateurs, et leur fournir l’information dont ils ont besoin dès qu’ils en ont besoin.

2. Agent de vente : aide à répondre aux questions des clients et collaborateurs, interroge en direct les stocks et les prix, et propose des recommandations de vente croisées ou additionnelles.

3. Agent de merchandising : combine reconnaissance d’image embarquée et vision par ordinateur pour automatiser l’analyse de l’état des rayons, identifier les ruptures, erreurs de placement, non-conformités planogramme ou erreurs de prix et de signalétique.

L’IA au bon moment, et sans cloud

Les SLM embarqués présentent des avantages particulièrement intéressants pour les équipes informatiques, innovation et techniques, notamment en matière de confidentialité :

● Confidentialité renforcée : les données de l’utilisateur ne quittent en effet jamais l’appareil, ce qui réduit le risque de violation de données et garantit un meilleur contrôle des informations personnelles.

● Faible latente : le traitement s’effectue localement, sans qu’il soit nécessaire d’interroger un serveur éloigné. Les réponses sont ainsi quasi instantanées, ce qui est essentiel pour les applications en temps réel, telles que les assistants vocaux ou la traduction.

● Réduction des coûts de bande passante et de cloud : comme les données ne sont plus systématiquement envoyées dans le cloud, le traitement local diminue l’usage des données mobiles et les dépenses liées au calcul des LLM dans le cloud.

● Fonctionnalités hors-ligne : lorsque les LLM sont intégrés aux appareils, l’IA peut continuer à fonctionner sans connexion Internet, ce qui est particulièrement utile dans les zones où la connectivité est limitée ou instable.

L’avenir est aux agents d’IA multimodaux

Le futur de l’IA est intrinsèquement multimodal. Les êtres humains n’expérimentent pas le monde uniquement par le texte ; ils utilisent tous leurs sens. L’IA doit faire de même en s’appuyant sur tous ces « sens » pour réellement comprendre et interagir efficacement avec le monde.

La bonne nouvelle, c’est que les SLM et les agents IA peuvent être multimodaux, comme dans l’exemple de l’agent merchandising évoqué précédemment. Pour exploiter pleinement leur potentiel, notamment lorsqu’ils sont déployés sur des appareils en périphérie, ils doivent justement être multimodaux, et ne pas se limiter au traitement et à la génération de texte. Deux approches principales permettent d’atteindre cet objectif :

● Les SLM multimodaux intégrés sont conçus pour traiter plusieurs modalités directement. Cette approche est la plus efficace, mais elle requiert un travail de conception et d’entraînement particulièrement méticuleux.

● Les systèmes multimodaux modulaires combinent un SLM avec des modèles spécialisés distincts (par exemple un modèle de reconnaissance d’images ou de transcription de la parole en texte). Le SLM joue alors le rôle de coordinateur en traitant le texte et en interagissant avec les autres modèles selon les besoins.

La tendance est aux SLM multimodaux plus intégrés, à mesure que la technologie évolue et que l’entraînement des modèles, même complexes, gagne en efficacité. Toutefois, une approche modulaire reste souvent plus simple et plus rentable à court terme.

L’avenir reposera probablement sur une combinaison des deux approches, en fonction des cas d’usage et des ressources disponibles. Les travaux de R&D actuels permettront de créer des SLM multimodaux intégrés et des agents IA plus efficaces et plus puissants, tout en développant des systèmes modulaires robustes, faciles à personnaliser et à déployer sur une large gamme d’appareils.

L’objectif est de permettre à des systèmes d’IA de comprendre le monde à travers plusieurs prismes, afin d’offrir des interactions plus naturelles, intuitives et efficaces avec les humains et leur environnement. L’IA qui améliore le travail au quotidien sera la véritable gagnante de demain.

*Andrea Mirabile est directeur global de la recherche en intelligence artificielle de Zebra Technologies

The post { Tribune Expert } – Agents IA : les grands bénéfices des petits modèles de langage appeared first on Silicon.fr.

Reçu — 10 décembre 2025

Pourquoi Adobe s’invite dans ChatGPT

10 décembre 2025 à 15:52

Adobe va intégré Photoshop, Adobe Express et Acrobat dans ChatGPT. Les utilisateurs pourront taper une requête dans ChatGPT pour retoucher des photos, créer un graphique, animer des designs ou résumer un PDF, déclenchant automatiquement l’outil correspondant.

Adobe va ainsi toucher les 800 millions d’utilisateurs actifs hebdomadaires de ChatGPT qui devront créer un compte Adobe pour utiliser les applications au sein de ChatGPT.

Ce lancement s’appuie sur l’annonce d’Adobe fin octobre, lorsque l’entreprise avait remanié ses outils de montage vidéo et d’édition d’images pour permettre aux utilisateurs d’exécuter des tâches via des assistants IA conversationnels. L’intégration dans ChatGPT s’inscrit dans la continuité de cette innovation en matière d’IA agentique et du protocole MCP.

Une adaptation aux bouleversements de l’IA

En août dernier, Adobe avait lancé Acrobat Studio, transformant les documents statiques en espaces de travail interactifs alimentés par l’IA. Lors de sa conférence Adobe MAX, l’éditeur avait également présenté des assistants IA pour Photoshop et Adobe Express, permettant à chacun de créer en utilisant ses propres mots et d’affiner les résultats avec les outils de classe mondiale de l’entreprise.

Son accord avec OpenAI intervient à un moment où Adobe intensifie ses efforts pour s’adapter aux transformations engendrées par l’IA dans les marchés du design professionnel, tout en élargissant sa portée auprès de nouveaux publics qui découvrent ses applications pour la première fois.

Les termes financiers de l’accord ne sont pas dévoilés.

The post Pourquoi Adobe s’invite dans ChatGPT appeared first on Silicon.fr.

L’Agentic AI Foundation veut imposer les standards de l’IA autonome

10 décembre 2025 à 15:17

Les poids lourds de l’intelligence artificielle passent à l’offensive pour structurer le marché naissant des agents IA.

OpenAI, Anthropic et Block annoncent la création de l’Agentic AI Foundation (AAIF), une nouvelle fondation hébergée par la Linux Foundation. L’ambition : imposer des standards ouverts pour ces systèmes capables d’agir de manière autonome, avant que la fragmentation du marché ne s’installe durablement.

Parmi les membres, on peut aussi citer Cloudflare, Oracle, Cisco, IBM  Salesforce.

L’initiative ne sort pas de nulle part. En s’appuyant sur la Linux Foundation, les trois fondateurs reprennent un modèle de gouvernance qui a fait ses preuves dans l’open source : transparence des décisions, règles publiques et représentation équilibrée des contributeurs. Un choix qui vise à rassurer les entreprises, réticentes à dépendre d’un seul fournisseur pour des technologies aussi critiques.

Car l’enjeu est de taille. Après des années d’expérimentation, les agents IA sortent des laboratoires pour devenir une infrastructure d’entreprise à part entière. Ces systèmes, capables de planifier et d’exécuter des tâches complexes avec un minimum de supervision humaine, soulèvent des questions majeures de sécurité, d’interopérabilité et de verrouillage technologique.

Trois briques technologiques au cœur du dispositif

L’AAIF démarre sur des bases concrètes, avec trois projets open source déjà largement adoptés par les développeurs. Anthropic apporte le Model Context Protocol (MCP), un protocole permettant de connecter les modèles de langage à des outils et systèmes externes de manière standardisée. Une brique essentielle pour orchestrer des agents capables d’agir dans des environnements complexes.

De son côté, Block contribue avec goose, un framework modulaire conçu pour construire et déployer des agents IA extensibles.

OpenAI, enfin, verse AGENTS.md dans l’escarcelle de la fondation. Ce format d’instructions ouvert, déjà utilisé par des dizaines de milliers de projets, fonctionne comme un « README pour machines » : il documente les capacités, outils et comportements des agents pour faciliter leur interopérabilité.

Un soutien des géants du cloud

L’initiative bénéficie d’emblée d’un soutien de poids. AWS, Google, Microsoft, Bloomberg et Cloudflare ont rejoint la fondation en tant que membres « platinum ». Une configuration qui donne à l’AAIF une influence immédiate sur la définition des standards de fait pour l’IA agentique, tout en affichant une neutralité vis-à-vis des fournisseurs.

Pour les développeurs, la promesse est de proposer un socle unifié de protocoles et de formats pour créer des agents fonctionnant à travers différents clouds, outils et référentiels de code. En standardisant des technologies déjà massivement utilisées, la fondation entend réduire les coûts d’intégration et accélérer l’adoption par les entreprises.

Au-delà de l’interopérabilité, l’AAIF met en avant les enjeux de sûreté et de fiabilité. En posant un cadre commun pour décrire les capacités des agents, contrôler leur accès aux outils et coordonner leur action entre systèmes, la fondation veut réduire les risques liés à des implémentations hasardeuses. Objectif : faciliter l’audit des comportements d’agents et faire évoluer collectivement les bonnes pratiques au fur et à mesure que ces technologies se diffusent.

The post L’Agentic AI Foundation veut imposer les standards de l’IA autonome appeared first on Silicon.fr.

IA de défense : Airbus décroche un contrat de 50 millions €

10 décembre 2025 à 14:33

Airbus franchit une nouvelle étape dans le secteur de la défense. L’industriel européen vient de signer un contrat de 50 millions € avec l’Agence ministérielle pour l’intelligence artificielle de défense (AMIAD) pour intégrer des technologies d’IA dans les systèmes militaires français.

Spationav, première cible de la modernisation

La phase initiale de ce contrat se concentrera sur la modernisation de Spationav, le système français de surveillance maritime. L’objectif : intégrer l’intelligence artificielle pour traiter les données issues des satellites, permettant ainsi une analyse plus rapide et plus précise des informations collectées.

Les applications futures devraient s’étendre à des domaines stratégiques comme le renseignement, la cybersécurité et la gestion des réseaux de télécommunications militaires.

L’ambition de la France est de centraliser l’ensemble des données collectées par ses capteurs dispersés sur satellites, radars et drones. Cette approche intégrée vise à offrir une vision unifiée et en temps réel du champ de bataille moderne, où l’information devient un atout aussi décisif que l’armement lui-même.

The post IA de défense : Airbus décroche un contrat de 50 millions € appeared first on Silicon.fr.

Reçu — 9 décembre 2025

Google défend le modèle de sécurité agentique de Chrome

9 décembre 2025 à 13:19

Dans l’immédiat, prière de bloquer tous les navigateurs IA pour minimiser l’exposition au risque.

Un document Gartner publié la semaine dernière fait cette recommandation aux CISO.

Google n’y est peut-être pas resté insensible. Quelques jours plus tard est en tout cas apparu, sur son blog sécurité, un post consacré à la navigation agentique dans Chrome – expérimentée depuis septembre.

Le groupe américain y met en avant son approche de défense « hybride » mêlant couches déterministe et probabiliste. Il l’accompagne d’un lien vers un autre post, daté de juin et centré sur l’injection de prompts dans Gemini (sur l’application et au sein de Google Workspace).

Ce post évoquait déjà l’approche de défense en couches. Entre autres techniques listées :

  • Entraînement de Gemini avec des données antagonistes pour améliorer sa résilience
  • Constitution d’un dataset de vulnérabilités pour entraîner des modèles classificateurs capables de détecter des instructions malveillantes
  • Ajout d’instructions dans les pour rappeler à Gemini de se concentrer sur les tâches demandées et d’ignorer les éventuelles instructions antagonistes
  • Détection et masquage des URL suspectes sur la base de la technologie Safe Browsing
  • Demande de confirmation par l’utilisateur pour certaines actions et fourniture d’informations lorsqu’une attaque est bloquée

Paraphase, spotlighting… Des stratégies pour ignorer le contenu problématique

Dans son post sur la navigation agentique dans Chrome, Google se réfère aussi à ses « principes de sécurité pour les agents ». Synthétisés dans un document publié au printemps, ils figurent plus en détail dans un livre blanc sur la sécurité de Gemini 2.5, publié en parallèle. Parmi les stratégies de défense qui y sont présentées, outre celles susmentionnées, il y a la paraphrase, qui consiste à faire réécrire les données entrantes par une IA distincte afin d’invalider les instructions problématiques.
Il y a aussi le spotlighting. Cette technique de prompt engineering implique d’insérer des marqueurs dans les données d’entrée pour permettre au modèle de distinguer les blocs de tokens non fiables. Microsoft y a dédié un article l’an dernier. Il y expose trois variantes « cumulatives » dites délimitation, datamarking et encodage. La première démarque l’emplacement d’un input dans le prompt en y affixant un ou plusieurs tokens spéciaux. La deuxième va plus loin en entrelaçant un token spécial sur l’ensemble du texte. La troisième rend la démarcation encore plus évidente en transformant le texte avec un algo de type base64 ou ROT13.

Une technique d’extraction de flux made in DeepMind

Dans le modèle de sécurité agentique de Chrome, le spotlighting contribue à ce que Google appelle l’user alignment critic. Objectif : assurer que le modèle préfère suivre les instructions utilisateur et système plutôt que celles issues de contenus externes. L’architecture adoptée dans ce cadre s’inspire du pattern dual-LLM. (en complément au modèle principal, planificateur, un modèle secondaire intervient à chaque fois qu’on travaille avec du contenu non fiable). Elle se nourrit aussi d’une technique que DeepMind a appelée CaMeL. Son principe, dans les grandes lignes : extraire explicitement les flux de contrôle et de données depuis les requêtes fiables, de sorte que les données non fiables que récupère le LLM ne peuvent jamais impacter le flux du programme.

CaMeL

Le modèle secondaire mis en œuvre dans Chrome vérifie chaque action après sa planification et détermine si elle sert ou non l’objectif déclaré. Il ne reçoit que des métadonnées, ce qui évite son empoisonnement par le contenu externe. En cas de rejet d’une action, le modèle principal reçoit du feed-back pour reformuler son plan. Si les rejets s’enchaînent, le contrôle peut être donné à l’utilisateur.

Les défenses statiques comme le spotlighting ont leurs limites face aux attaques adaptatives. Dans ce contexte, il est nécessaire de durcir le modèle principal, en s’appuyant sur ses capacités de raisonnement. On touche là à l’autre composante de l’approche « hybride ». Dans ce domaine, en plus des éléments déjà abordés, on peut élaborer des modèles chargés d’analyser les plans d’actions des agents et de prédire le risque de résultats indésirables.

Les règles same-origin adaptées aux agents

Certaines briques fondamentales du modèle de sécurité de Chrome sont perpétuées dans l’agentique. L’isolation de sites en fait partie (les pages liées à des sites distincts sont toujours placées dans des processus distincts, chacun exécuté dans sa propre sandbox). Il en va de même avec les règles d’origine commune (same-origin policy). Elles limitent la façon dont les documents et les scripts d’une certaine origine peuvent interagir avec les ressources d’une autre origine. Par exemple, en bloquant l’utilisation de JavaScript pour accéder à un document dans un iframe ou pour récupérer des données binaires à partir d’une image intersites. Adaptées aux agents, elles ne leur permettent d’accéder qu’à des données dont l’origine a un lien avec la tâche à effectuer ou que l’utilisateur a explicitement partagées.

Pour chaque tâche, une fonction de portillonnage décide quelles origines sont pertinentes. Elles sont alors séparées en deux ensembles, suivis pour chaque session. D’un côté, les origines en lecture seul (Gemini peut en consommer le contenu). De l’autre, celles en lecture-écriture (Gemini peut réaliser des actions, comme cliquer et saisir des caractères). Si l’origine d’un iframe n’est pas sur la liste des éléments pertinents, le modèle n’en voit pas le contenu. Cela s’applique aussi au contenu issu de l’appel d’outils.

Comme dans le cas de l’user alignment critic, les fonctions de portillonnage ne sont pas exposées au contenu externe.
Il est difficile de trouver le bon équilibre du premier coup, admet Google. C’est en ce sens que le mécanisme actuellement implémenté ne suit que l’ensemble lecture-écriture.

Le programme bug bounty de Chrome clarifié pour l’agentique

Lors de la navigation vers certains sites sensibles (contrôle sur la base d’une liste), l’agent demande confirmation à l’utilisateur. Même chose pour la connexion à un compte à partir du gestionnaire de mots de passe Google. Et plus globalement dès lors que le modèle juge avoir à effectuer une action sensible. Il peut alors solliciter la permission ou donner la main à l’utilisateur.

contrôle utilisateur

Google en a profité pour mettre à jour les lignes directrices du programme de bug bounty de Chrome. Il y clarifie les vulnérabilités agentiques qui peuvent donner lieu à une récompense.

La plus élevée (20 000 $) vaut pour les attaques qui modifient l’état de comptes ou de données. Par exemple, une injection indirecte de prompt permettant un paiement ou une suppression de compte sans confirmation par l’utilisateur. Ce montant ne sera attribué qu’en cas de fort impact, de reproductibilité sur de nombreux sites, de réussite sur au moins la moitié des tentatives, et d’absence de lien étroit avec le prompt utilisateur.

La récompense maximale est fixée à 10 000 $ pour les attaques qui peuvent engendrer l’exfiltration de données sensibles. Et à 3000 $ pour celles qui contourneraient des éléments de sécurité agentique.

récompenses bug bounty Chrome

Illustration générée par IA

The post Google défend le modèle de sécurité agentique de Chrome appeared first on Silicon.fr.

Reçu — 8 décembre 2025

IBM rachète Confluent pour 11 milliards $

8 décembre 2025 à 14:13

Avec l’acquisition de Confluent pour une valeur de 11 milliards $, IBM réalise l’une de ses plus importantes opérations depuis le rachat de Red Hat en 2019.

Cette transaction permet au groupe d’Armonk de s’emparer d’une technologie devenue stratégique : le traitement de données massives en temps réel, indispensable au fonctionnement des applications d’intelligence artificielle les plus avancées.

Avec cette acquisition, IBM entend créer une plateforme de données intelligente spécialement conçue pour l’IA d’entreprise, capable de connecter et faire circuler les informations entre environnements, applications et interfaces de programmation.

Confluent : un acteur clé du streaming de données

Basée à Mountain View en Californie, Confluent s’est imposée comme un pionnier du streaming de données en temps réel, une technologie devenue cruciale pour alimenter les applications d’intelligence artificielle. La plateforme, construite sur Apache Kafka, permet aux entreprises de connecter, traiter et gérer des flux massifs de données instantanément, éliminant les silos inhérents aux systèmes d’IA agentique.

La société compte plus de 6 500 clients à travers le monde, dont plus de 40% des entreprises du Fortune 500. Michelin utilise ainsi sa plateforme pour optimiser en temps réel ses stocks de matières premières et semi-finies. Instacart a déployé la technologie pour développer des systèmes de détection de fraude et améliorer la visibilité des produits disponibles sur sa plateforme de livraison.

Une stratégie d’acquisitions assumée

Pour Arvind Krishna, PDG d’IBM depuis 2020, cette transaction s’inscrit dans une politique volontariste de croissance externe visant à positionner le groupe sur les segments à forte croissance et marges élevées du logiciel et du cloud.

Cette acquisition fait suite au rachat d’HashiCorp pour 6,4 milliards $ en avril 2024 et, surtout, à l’opération Red Hat de 34 milliards $ en 2019, considérée par les analystes comme le catalyseur central de la transformation cloud d’IBM.

Le timing de l’opération  n’est pas anodin. Selon IDC, plus d’un milliard de nouvelles applications logiques devraient émerger d’ici 2028, remodelant les architectures technologiques dans tous les secteurs. Le marché adressable de Confluent a doublé en quatre ans, passant de 50 milliards $ à 100 milliards en 2025.

Des synergies attendues

Les deux entreprises collaboraient déjà depuis cinq ans dans le cadre d’un partenariat permettant à certains clients d’IBM d’utiliser la plateforme de Confluent. L’intégration devrait permettre de créer des synergies substantielles à travers l’ensemble du portefeuille d’IBM, notamment dans l’IA, l’automatisation, les données et le conseil.

Les principaux actionnaires de Confluent, détenant collectivement environ 62% des droits de vote, ont conclu un accord de vote avec IBM, s’engageant à soutenir la transaction et à s’opposer à toute opération alternative. En cas d’échec ou de résiliation de l’accord, IBM devra verser à Confluent une indemnité de rupture de 453,6 millions $.

IBM a financé l’opération avec sa trésorerie disponible. La transaction, soumise à l’approbation des actionnaires de Confluent et aux autorisations réglementaires, devrait se finaliser d’ici la mi-2026.

The post IBM rachète Confluent pour 11 milliards $ appeared first on Silicon.fr.

L’UE sanctionne X : première amende historique dans le cadre du DSA

8 décembre 2025 à 11:59

Un coup de semonce contre Elon Musk ou le début d’une série de sanctions contre les réseaux sociaux ? Vendredi 5 décembre 2025, la Commission européenne a infligé une amende de 120 millions € à X, son réseau social racheté en 2022.

Cette sanction constitue la première application concrète du Digital Services Act (DSA), le règlement européen sur les services numériques entré en vigueur il y a deux ans. Une décision qui intervient après deux années d’enquête et qui s’annonce comme le début d’un bras de fer politique majeur entre Bruxelles et Washington.

Trois infractions majeures sanctionnées

La Commission européenne a retenu trois violations distinctes des obligations de transparence imposées par le DSA, toutes notifiées initialement en juillet 2024.

Le premier grief concerne la coche bleue, utilisée auparavant pour signaler des comptes officiels gratuits mais désormais vendue 7 euros par mois. Bruxelles estime que cette pratique constitue une forme de conception trompeuse qui viole le DSA. Selon les nouveaux paramètres de X, un compte doté d’une coche peut ne pas signaler un utilisateur réel et être un robot, a déclaré la Commission.

L’exécutif européen précise que si le DSA n’impose pas aux plateformes de vérifier l’identité de leurs membres, il leur interdit en revanche de prétendre faussement qu’une telle vérification a eu lieu. Ce système expose les utilisateurs à des risques accrus d’escroquerie par usurpation d’identité et de manipulation par des acteurs malveillants.

Le deuxième manquement porte sur le registre publicitaire de X, qui ne respecte pas les exigences de transparence du DSA. L’accès au répertoire est rendu difficile et des informations essentielles manquent, notamment l’identité de l’entité qui finance les campagnes publicitaires. Cette opacité empêche la surveillance efficace des risques, notamment la détection d’escroqueries ou de campagnes de menaces hybrides.

Enfin, X est accusé d’imposer des obstacles inutiles aux chercheurs indépendants qui veulent avoir accès à ses données publiques, comme le nombre de vues, de likes, de partages, les tendances de hashtags. Les conditions de service de la plateforme interdisent explicitement cet accès indépendant. En étudiant des phénomènes comme la polarisation des publics ou comment des contenus se propagent sur les réseaux sociaux, les chercheurs peuvent éventuellement détecter des risques systémiques pour nos démocraties, comme les tentatives d’ingérences étrangères lors des élections.

Une amende « proportionnée » selon Bruxelles

La Commission européenne a défendu le montant de la sanction, soulignant sa proportionnalité. Le DSA prévoit théoriquement des amendes pouvant atteindre 6% du chiffre d’affaires mondial annuel pour chaque infraction constatée. Face aux critiques, Henna Virkkunen, vice-présidente de la Commission chargée de la souveraineté technologique, a expliqué que la sanction prenait en compte la nature, la gravité et la durée des infractions commises.

Avant de préciser, les amendes se calculent sur base de critères qui tiennent compte de la nature des infractions, de leur gravité et de leur durée. Sur cette base, l’amende pour les coches bleues a été estimée à 45 millions €, celle pour les publicités à 35 millions et celle pour l’accès aux données à 40 millions €.

Une tempête politique transatlantique

La décision de Bruxelles a déclenché une vive réaction du côté américain, même avant son annonce officielle. Le vice-président américain JD Vance a dénoncé la démarche européenne en déclarant que l’UE devrait défendre la liberté d’expression au lieu de s’en prendre à des entreprises américaines pour des foutaises, s’attirant un message de remerciement d’Elon Musk.

Le chef de la diplomatie américaine Marco Rubio a estimé que l’amende infligée par l’Union européenne constituait une attaque contre le peuple américain par des gouvernements étrangers, affirmant que l’époque de la censure en ligne était révolue.

Face à ces accusations, Henna Virkkunen a fermement répondu que l’amende n’avait rien à voir avec de la censure, précisant que la Commission n’était pas là pour imposer les amendes les plus élevées, mais pour s’assurer que les lois sur le numérique soient respectées.

Elon Musk a déclaré samedi sur sa plateforme que l’UE devrait être abolie, dénonçant la surrégulation de l’Union européenne.

Cette affaire s’inscrit dans un contexte de tensions croissantes entre Washington et Bruxelles sur la régulation numérique et les relations commerciales.

Des enquêtes encore en cours

La sanction annoncée ne couvre que les infractions identifiées en juillet 2024. La Commission européenne a précisé que plusieurs enquêtes concernant X se poursuivent, notamment sur des soupçons de non-respect des obligations en matière de contenus illégaux et de désinformation. Bruxelles s’attend à ce que ces enquêtes soient bouclées plus rapidement que la première.

Le réseau X a entre 60 et 90 jours pour se mettre en conformité. S’il ne le fait pas, des amendes supplémentaires pourraient lui être infligées.

Un symbole de la souveraineté numérique européenne

Cette première amende dans le cadre du DSA marque un tournant dans l’approche réglementaire de l’Union européenne. La Commission montre qu’elle ne se laisse pas intimider par les pressions américaines, malgré un contexte de négociations commerciales tenduesX

Pour les utilisateurs européens de X, des changements sont attendus : interface modifiée, notifications renforcées, refonte du processus de vérification et amélioration de la transparence publicitaire. La plateforme devra également ouvrir l’accès à certaines données pour la recherche académique.

The post L’UE sanctionne X : première amende historique dans le cadre du DSA appeared first on Silicon.fr.

{ Tribune Expert } – Sécuriser la GenAI commence par un inventaire clair et une visibilité réelle sur ses composants

8 décembre 2025 à 11:18

La plupart des organisations ont découvert la GenAI ces dernières années. Dès lors, elles ont avancé vite, très vite. Les usages ont rapidement fleuri et les projets se sont empilés, mais un constat a fini par s’imposer dans les discussions entre équipes techniques : impossible d’ignorer plus longtemps les risques spécifiques liés aux grands modèles de langage.

Car c’est peu de dire que la sécurité des LLM a, dans un premier temps, été reléguée au second plan. L’arrivée de l’OWASP LLM Top 10 change cet état de fait en apportant un cadre clair pour identifier les vulnérabilités critiques observées dans les applications et comprendre comment les atténuer.

L’OWASP, pour Open Web Application Security Project, est une organisation internationale dédiée à la sécurité des logiciels. Le référentiel LLM top 10, recense les 10 principaux risques de sécurité liés spécifiquement aux modèles de langage (LLM) et aux applications qui les utilisent. Il donne enfin un vocabulaire commun aux développeurs, aux architectes et aux équipes sécurité. Sa vocation est simple : rendre les charges de travail IA plus sûres, en offrant des repères que les entreprises n’avaient pas jusqu’ici.

L’initiative a d’ailleurs pris de l’ampleur et s’inscrit désormais dans le GenAI Security Project, un effort mondial qui dépasse la seule liste des dix risques initiaux et fédère plusieurs travaux autour de la sécurité de l’IA générative.

Ce mouvement répond à une réalité vécue sur le terrain. Beaucoup d’équipes peinent encore à s’aligner au moment de déployer des technologies GenAI : responsabilités dispersées, rythmes différents et une question récurrente sur la manière d’aborder ce sujet émergent. L’OWASP arrive justement pour apporter cette cohérence, avec des contrôles compréhensibles et applicables dans des environnements où tout s’accélère.

Sa singularité tient aussi à sa place dans l’écosystème. Là où des cadres de classification des menaces comme MITRE ATT&CK et MITRE ATLAS décrivent surtout les tactiques et techniques d’attaque, l’OWASP LLM top 10 se concentre sur les risques spécifiques aux modèles génératifs. Il offre ainsi une grille de lecture complémentaire et nécessaire pour mieux structurer les priorités.

GenAI, Kubernetes et l’élargissement de la surface d’attaque

Si l’OWASP LLM Top 10 arrive à point nommé, c’est aussi parce que les environnements techniques qui portent la GenAI ont profondément changé.

Les organisations ne se contentent plus d’utiliser des services grand public. Elles déploient désormais leurs propres modèles, souvent au sein de plateformes cloud native pensées pour absorber des volumes variables et des charges de calcul élevées.

L’écosystème s’est transformé à grande vitesse, avec l’adoption de solutions comme Llama 2, Midjourney, ElevenLabs, ChatGPT ou encore Sysdig Sage dans des environnements Kubernetes taillés pour la scalabilité et l’orchestration.

Cette transition a un effet immédiat car elle élargit la surface d’attaque. Un modèle d’IA déployé dans un cluster Kubernetes n’a rien à voir avec une application traditionnelle exécutée on-premises. Les risques ne sont plus seulement liés aux données ou au comportement du modèle, mais à toute la chaîne qui l’entoure. Un conteneur mal configuré, un composant obsolète ou un accès mal maîtrisé peuvent suffire à exposer l’ensemble de l’infrastructure.

La complexité de ces environnements accentue un phénomène déjà bien visible : l’absence de repères communs pour comprendre ce qui relève d’un risque LLM, d’une mauvaise configuration Kubernetes ou d’un problème de chaîne d’approvisionnement logicielle.

Dans un tel contexte, la seule intuition ne suffit plus. Les équipes doivent composer avec des technologies qui évoluent plus vite que les pratiques internes, tout en tenant compte d’un paysage réglementaire qui se densifie, notamment avec l’entrée en vigueur de l’AI Act en Europe en 2025.

C’est précisément cette convergence, qui englobe nouveaux usages, infrastructures distribuées et pression réglementaire, qui rend indispensable une approche structurée de la sécurité GenAI. Et c’est là que l’OWASP pose les premières briques d’une méthodologie enfin partagée.

Poser les fondations d’une sécurité opérationnelle et efficace !

Face à ces environnements qui se complexifient, l’adage à retenir est que l’on ne protège correctement que ce qu’on voit réellement. Or, la majorité des organisations manquent encore d’un inventaire fiable de leurs actifs IA, qu’il s’agisse de modèles internes ou de solutions tierces intégrées rapidement. L’OWASP rappelle d’ailleurs que cette visibilité constitue la première étape d’une sécurité GenAI solide.

C’est là que certaines approches prennent tout leur sens, comme l’identification automatique des endroits où les paquets IA s’exécutent, en reliant ces informations aux événements d’exécution (runtime), aux vulnérabilités et aux mauvaises configurations. L’objectif est simple : faire émerger les risques réels, là où ils apparaissent.

La visibilité passe aussi par la SBOM (Software Bill of Materials). En y intégrant les composants d’IA, les équipes disposent d’une liste complète de tous les éléments qui composent leurs charges de travail GenAI. Ce recensement permet ensuite de prioriser les charges de travail selon leur niveau de risque.

Enfin, pour structurer cette démarche, les organisations peuvent s’appuyer sur des rapports OWASP Top 10 préconfigurés et sur l’alignement avec MITRE ATLAS, qui éclaire la manière dont les modèles peuvent être ciblés selon des tactiques d’attaque documentées.

En réunissant ces briques (inventaire, SBOM et visibilité sur l’exécution au runtime) les équipes disposent non seulement d’informations, mais d’une lecture hiérarchisée et exploitable de leurs risques GenAI. C’est cette capacité à voir, comprendre et prioriser qui transforme enfin la sécurité de l’IA en pratique opérationnelle.

Philippe Darley est expert sécurité du Cloud chez Sysdig

The post { Tribune Expert } – Sécuriser la GenAI commence par un inventaire clair et une visibilité réelle sur ses composants appeared first on Silicon.fr.

Reçu — 3 décembre 2025

AI Safety Index 2025 : un bilan inquiétant de la sécurité de l’IA

3 décembre 2025 à 16:59

Le Future of Life Institute vient de publier l’édition 2025 de son AI Safety Index, un rapport qui évalue les pratiques de sécurité des principales entreprises développant des intelligences artificielles avancées.

Les conclusions sont sans appel : aucune entreprise n’atteint l’excellence en matière de sécurité, et le secteur dans son ensemble reste dangereusement mal préparé face aux risques existentiels que pourraient poser les IA futures.

Un classement général décevant

Sur les huit entreprises évaluées, aucune n’obtient une note maximale. Le meilleur résultat revient à Anthropic avec un simple C+, suivi d’OpenAI (C) et de Google DeepMind (C-). Les autres acteurs ( xAI, Z.ai, Meta, DeepSeek et Alibaba Cloud) obtiennent des notes nettement inférieures, allant de D à F.

Cette situation révèle que même les leaders du secteur se situent tout au plus dans la moyenne. L’industrie de l’IA, malgré ses ambitions affichées de développer des systèmes toujours plus puissants, est loin de disposer des garde-fous nécessaires.

Anthropic : le meilleur élève, mais encore insuffisant

Malgré certaines critiques, Anthropic demeure l’entreprise la plus responsable selon l’index. Elle se distingue par une gouvernance solide (statut de Public Benefit Corporation), des efforts significatifs en recherche de sécurité, un cadre de sécurité relativement développé et une communication transparente sur les risques.

Toutefois, des faiblesses importantes subsistent. Le rapport souligne notamment l’absence récente d’essais sur l’amélioration des capacités humaines dans le cycle d’évaluation des risques, ainsi qu’un passage par défaut à l’utilisation des interactions des utilisateurs pour l’entraînement des modèles.

Les recommandations adressées à Anthropic incluent la formalisation de seuils de risques mesurables, la documentation de mécanismes concrets d’atténuation, l’amélioration de l’indépendance des évaluations externes et la publication d’une version publique robuste de sa politique de lanceurs d’alerte.

OpenAI : des progrès, mais un écart entre discours et pratique

OpenAI se distingue par un processus d’évaluation des risques plus large que certains concurrents et par la publication, unique parmi ses pairs, d’une politique de lanceur d’alerte (whistleblowing) suite à sa médiatisation.

Néanmoins, le rapport appelle l’entreprise à aller plus loin : rendre ses seuils de sécurité réellement mesurables et applicables, accroître la transparence vis-à-vis des audits externes, et surtout aligner ses positions publiques avec ses engagements internes.

Google DeepMind : des avancées timides

DeepMind montre des progrès en matière de transparence, ayant notamment complété le questionnaire de l’AI Safety Index et partagé des éléments de politique interne, comme son dispositif de « whistleblowing ».

Cependant, les fragilités persistent : l’évaluation des risques reste limitée, la validité des tests externes est jugée faible, et le lien entre la détection de risques et le déclenchement de mesures concrètes demeure flou.

Les autres acteurs : des efforts marginaux

Certaines entreprises ont entamé des démarches d’amélioration. Par exemple, xAI a publié un cadre de sécurité pour ses « IA de frontière », et Meta a formalisé un cadre avec seuils et modélisation des risques.

Mais les évaluations restent superficielles ou incomplètes : les couvertures de risque sont restreintes, les seuils peu crédibles, les mécanismes d’atténuation flous ou absents, et la gouvernance interne insuffisante. On note notamment l’absence de politique de lanceurs d’alerte et un manque d’autorité claire en cas de déclenchement de risques.

Pour les entreprises les moins bien notées, notamment DeepSeek et Alibaba Cloud, les progrès constatés sont très modestes, principalement sur la publication de cadres de sécurité ou la participation à des standards internationaux.

Le talon d’Achille : la sécurité existentielle

Le constat le plus alarmant du rapport concerne la sécurité existentielle, c’est-à-dire la capacité à prévenir des catastrophes majeures comme la perte de contrôle ou le mésalignement (misalignment).

Pour la deuxième édition consécutive, aucune entreprise n’obtient une note supérieure à D dans ce domaine. Cela signifie qu’en dépit des ambitions exprimées par certains acteurs de développer une AGI ou une superintelligence dans la décennie, aucune démarche crédible et concrète de planification pour garantir le contrôle ou l’alignement à long terme n’a été mise en place.

Un membre du comité d’experts qualifie ce décalage entre la cadence des innovations techniques et l’absence de stratégie de sécurité de profondément alarmant.

Cette situation pose plusieurs défis majeurs :

Un risque structurel : Si les entreprises continuent à développer des IA sans plans tangibles de contrôle existentiel, nous pourrions nous diriger vers des systèmes dont le comportement échappe à tout encadrement, posant potentiellement un danger global.

Un problème de gouvernance collective : L’absence d’un standard universel, d’un plan de surveillance indépendant ou d’une régulation contraignante rend la sécurité de l’IA dépendante de la bonne volonté des entreprises.

Une dissonance entre ambitions et préparation : Nombreuses sont les acteurs qui visent l’AGI dans la décennie, mais aucun ne démontre qu’il a envisagé, préparé ou traduit cela en mesures concrètes.

Les recommandations du rapport

Face à ce constat, le rapport formule plusieurs recommandations à destination des entreprises, des régulateurs et des décideurs publics.

D’abord, les entreprises doivent dépasser les déclarations d’intention et produire des plans concrets, chiffrés et mesurables, avec des seuils de risque clairs, des mécanismes d’alerte, des protocoles d’atténuation et une vraie gouvernance interne, idéalement avec une surveillance indépendante..

Ensuite, les entreprises devraient s’engager publiquement à respecter des standards communs, par exemple en adoptant l’AI Act  dans l’Union Européenne ou un code de bonnes pratiques similaire, et en coopérant à des initiatives globales de gouvernance de l’IA.

Enfin, en cas d’intention réelle de développer des IA très puissantes, les acteurs doivent clarifier leurs objectifs et expliquer comment ils comptent garantir le contrôle, l’alignement et la prévention des risques existentiels.

Limites méthodologiques

Il convient de noter que les évaluations reposent sur des éléments publics ou documentés. Il ne s’agit pas d’audits internes secrets, mais d’observations sur ce que les entreprises ont rendu public ou déclaré. Par conséquent, l’index mesure ce que l’on sait des pratiques, ce qui signifie que des efforts internes invisibles pourraient exister sans être capturés.

De plus, l’édition 2025 couvre des pratiques jusqu’à début novembre 2025 et ne prend pas en compte les événements récents, lancements de nouveaux modèles ou annonces postérieures à cette date.


AI Safety Index 2025 : la méthodologie


L’AI Safety Index 2025 évalue huit entreprises majeures du secteur : Anthropic, OpenAI, Google DeepMind, xAI, Z.ai, Meta, DeepSeek et Alibaba Cloud.

Sources d’information
Les évaluations reposent exclusivement sur des éléments publics ou documentés fournis par les entreprises. Il ne s’agit pas d’audits internes confidentiels, mais d’une analyse de ce que les entreprises ont choisi de rendre public ou de déclarer officiellement. Certaines entreprises ont complété le questionnaire de l’AI Safety Index, permettant une évaluation plus précise.

Système de notation
Le rapport utilise un système de notation allant de A (excellent) à F (insuffisant), avec des graduations intermédiaires (A+, A, A-, B+, B, etc.). Les notes sont attribuées par domaine d’évaluation, notamment :

  • La gouvernance et la transparence
  • L’évaluation des risques
  • Les mécanismes d’atténuation
  • La sécurité existentielle
  • Les politiques de lanceurs d’alerte
  • L’indépendance des audits externes

Limites reconnues
L’index mesure uniquement ce qui est connu publiquement des pratiques des entreprises. Des efforts internes significatifs pourraient exister sans être capturés par cette évaluation. Le rapport mentionne explicitement ses limites méthodologiques.

L’édition 2025 couvre les pratiques jusqu’à début novembre 2025 et ne prend pas en compte les événements, lancements de modèles ou annonces postérieures à cette date de collecte.

The post AI Safety Index 2025 : un bilan inquiétant de la sécurité de l’IA appeared first on Silicon.fr.

Reçu — 2 décembre 2025

Pourquoi OpenAI décrète l’« alerte rouge » face à Google

2 décembre 2025 à 16:24

La pression monte sur OpenAI. Dans un mémo interne envoyé ce lundi et consulté par le Wall Street Journal, Sam Altman convoque une « alerte rouge » pour améliorer la qualité de ChatGPT. Une décision qui implique de reléguer d’autres projets au second plan, dont le développement de la publicité, des agents IA pour le shopping et la santé, ainsi que Pulse, un assistant personnel produisant des actualités matinales personnalisées.

Ce virage stratégique intervient alors que Google vient de reprendre la main technologique. Le géant de Mountain View vient de lancer son modèle Gemini 3, qui a surpassé le GPT-5 d’OpenAI sur les tests de référence de l’industrie. De son côté, Anthropic, autre rival montant, a également dépassé OpenAI avec son modèle Opus 4.5.

Les chiffres témoignent que la dynamique profite à Google qui affirme que sa base d’utilisateurs actifs mensuels est passée de 450 millions en juillet à 650 millions en octobre, dopée notamment par le lancement d’un générateur d’images en août. Plus révélateur encore : d’après Similarweb, les internautes passent désormais plus de temps à discuter avec Gemini qu’avec ChatGPT, même si OpenAI conserve une large avance en nombre d’utilisateurs avec plus de 800 millions d’utilisateurs hebdomadaires.

Un modèle économique sous tension

Le défi pour OpenAI ne se limite pas à la technologie. L’entreprise fait face à un désavantage structurel majeur : elle n’est pas rentable et doit lever des fonds quasiment en continu pour survivre, contrairement à Google qui peut financer ses investissements sur ses revenus courants. Selon ses propres projections financières, OpenAI devra atteindre environ 200 milliards $ de chiffre d’affaires pour devenir profitable en 2030.

Dans son mémo, Sam Altman insiste sur la nécessité d’apporter des améliorations substantielles à ChatGPT, en matière de personnalisation, de rapidité, de fiabilité et de capacité à répondre à un éventail plus large de questions. Pour y parvenir, il a instauré des conférences téléphoniques quotidiennes avec les équipes responsables et encouragé les transferts temporaires entre services.

Cette « alerte rouge » succède à une précédente « alerte orange ». OpenAI utilise un système de trois codes couleur (jaune, orange, rouge) pour hiérarchiser l’urgence des problématiques à traiter.

Malgré ces difficultés, Sam Altman conserve des arguments pour rassurer. Dans son mémo, il a affirmé qu’un nouveau modèle de raisonnement prévu la semaine prochaine surpassera le dernier Gemini de Google. Nick Turley, responsable de ChatGPT, a d’ailleurs souligné lundi soir sur X que l’objectif était de poursuivre la croissance « tout en rendant ChatGPT encore plus intuitif et personnel ».

Reste que cette mobilisation générale confirme ce que beaucoup soupçonnaient : la domination initiale d’OpenAI dans l’IA générative appartient désormais au passé. La course de fond ne fait que commencer.

Illustration : image générée par l’IA

The post Pourquoi OpenAI décrète l’« alerte rouge » face à Google appeared first on Silicon.fr.

SaaS et chiffrement : Microsoft 365 ciblé par un appel à la vigilance

2 décembre 2025 à 15:27

Pour les données sensibles, le SaaS n’est pas admissible, à moins d’apporter ses propres clés de chiffrement.

L’association suisse privatim – qui réunit des autorités de surveillance en matière de protection des données des organes publics – a récemment communiqué cette position. Elle vise plus précisément les solutions de « grands fournisseurs internationaux […], comme […] Microsoft 365 ». Un raisonnement qui tient entre autres à l’existence du CLOUD Act… et aux perspectives d’accès à des données par les autorités américaines sans respect des règles de l’entraide judiciaire internationale.

La plupart des solutions SaaS n’offrent pas encore de véritable chiffrement de bout en bout, fait également remarquer privatim. Qui dénonce aussi une transparence insuffisante des « entreprises opérant à l’échelle mondiale » pour que les autorités suisses puissent vérifier le respect des obligations contractuelles en matière de protection des données. Ce constat, poursuit l’association, vaut autant pour la mise en œuvre de mesures techniques et la gestion des changements, que pour l’engagement et le contrôle des collaborateurs et des sous-traitants.

Microsoft 365 : trois options pour utiliser ses propres clés de chiffrement

Microsoft 365 fournit un chiffrement de base au niveau du volume via BitLocker et DKM (Distributed Key Manager, techno côté client qui utilise un ensemble de clés secrètes). Depuis octobre 2023, c’est de l’AES256-CBC par défaut.

La voie principale pour apporter ses propres clés est l’option Customer Key de Purview. Elle fonctionne avec les licences suivantes :

  • Office 365 E5
  • Microsoft 365 E5
  • Purview Suite (ex-Microsoft 365 E5 Compliance)
  • Microsoft 365 E5 Information Protection & Governance
  • Microsoft 365 Security and Compliance for FLW

Purview Customer Key s’appuie sur le service Azure Key Vault. Au niveau Standard, les clés – générées dans le coffre-fort ou importées – sont protégées par logiciel. Au niveau Premium, elles sont stockées dans des HSM (modules de sécurité matériels). Il existe une option monolocataire dite Managed HSM.

Autre possibilité : le chiffrement à double clé : une sous le contrôle du client, l’autre stockée dans Azure. Une solution à réserver aux données très sensibles, selon Microsoft. Elle condamne effectivement l’accès à des fonctionnalités comme l’eDiscovery, la recherche et l’indexation, les web apps Office, les règles antimalware/antispam qui exigent une visibilité sur les pièces jointes… et Copilot.

Même avec l’option Customer Key, Microsoft conserve une clé maître (« clé de disponibilité », que le client peut demander à activer en cas de perte de ses propres clés.

tarification Azure Key Vault

tarification clés Standard Premium

tarification 3

tarification 4

Illustration principale © Andrei Kholmov – Shutterstock

The post SaaS et chiffrement : Microsoft 365 ciblé par un appel à la vigilance appeared first on Silicon.fr.

Gradium lève 60 millions € pour industrialiser l’IA vocale

2 décembre 2025 à 14:03

Trois mois après sa création en septembre 2025, Gradium annonce officiellement son lancement avec une levée de fonds de 60 millions € en tour d’amorçage. Un montant rare pour une entreprise aussi jeune mais qui témoigne de l’appétit des investisseurs pour les technologies d’IA vocale de nouvelle génération.

Une technologie fondée sur les modèles de langage audio

L’approche technique de Gradium repose sur les modèles de langage audio, équivalents natifs-audio des large language models (LLM) textuels. Cette architecture, initialement inventée par les fondateurs de l’entreprise, permet de traiter la voix de manière native sans passer par une transcription intermédiaire en texte, contrairement aux systèmes traditionnels qui enchaînent reconnaissance vocale, traitement textuel et synthèse vocale.

Cette approche native offre plusieurs avantages techniques : réduction de la latence, préservation de l’expressivité vocale et capacité à gérer n’importe quelle tâche vocale de manière unifiée. Les modèles de langage audio sont désormais devenus le standard dominant de l’industrie depuis leur invention par les fondateurs.

L’équipe fondatrice réunit quatre chercheurs reconnus dans le domaine de l’IA audio : Neil Zeghidour (CEO, ex-Meta et Google DeepMind), Olivier Teboul (CTO, ex-Google Brain), Laurent Mazaré (Chief Coding Officer, ex-Google DeepMind et Jane Street) et Alexandre Défossez (Chief Scientist Officer, ex-Meta). Leur expertise s’appuie sur plus d’une décennie de recherche fondamentale menée notamment au sein de Kyutai, laboratoire de recherche en IA à but non lucratif dont Neil Zeghidour et Laurent Mazaré étaient deux membres fondateurs.

Cette collaboration avec Kyutai se poursuit et constitue un atout stratégique : elle donne à Gradium un accès privilégié aux avancées de la recherche fondamentale, qu’elle peut ensuite transférer rapidement vers des applications commerciales. La technologie sous-jacente de Gradium sera identique à celle de Moshi, l’IA vocale développée par Kyutai, a précisé Neil Zeghidour à Bloomberg.

Un positionnement « qualité-latence-coût »

Gradium affirme résoudre un compromis technique majeur du secteur : les systèmes vocaux actuels obligent généralement à choisir entre qualité d’interaction, faible latence et coût abordable. La startup vise à proposer simultanément une expressivité vocale réaliste, une transcription précise et une interaction à très faible latence, tout en maintenant des prix permettant un déploiement à grande échelle.

Cette proposition de valeur s’adresse en priorité aux développeurs et aux entreprises via une plateforme API. Le service supporte déjà cinq langues au lancement (anglais, français, allemand, espagnol et portugais), avec d’autres en préparation.

Gradium affirme générer ses premiers revenus quelques semaines seulement après sa création. L’entreprise compte déjà des clients dans plusieurs secteurs : gaming, agents IA, service client, apprentissage des langues et santé.

Le tour de seed de 60 millions d’euros a été co-mené par FirstMark Capital et Eurazeo, avec la participation de DST Global Partners, Eric Schmidt (ancien CEO et Chairman de Google), Xavier Niel (Iliad), Rodolphe Saadé (CMA CGM), Korelya Capital et Amplify Partners.

Ce montant positionne Gradium parmi les levées de seed les plus importantes de l’écosystème français et européen, reflétant les attentes du marché sur le potentiel de l’IA vocale. Selon Neil Zeghidour, le secteur en est encore au stade où se trouvaient les chatbots avant l’émergence des LLM : les systèmes existants restent fragiles, coûteux et limités dans leur capacité à proposer des interactions naturelles.

L’ambition affichée de Gradium est de devenir le socle technologique de référence pour la voix à l’échelle mondiale, en faisant de la voix l’interface principale entre humains et machines.

Photo : Les fondateurs de Gradium. De gauche à droite : Olivier Teboul (Chief Technology Officer), Alexandre Défossez (Chief Scientist Officer), Neil Zeghidour (Chief Executive Officer), Laurent Mazaré (Chief Coding Officer) © DR

The post Gradium lève 60 millions € pour industrialiser l’IA vocale appeared first on Silicon.fr.

Reçu — 1 décembre 2025

HSBC signe avec Mistral AI

1 décembre 2025 à 11:26

HSBC a signé un accord pluriannuel avec Mistral AI afin d’intégrer des outils d’intelligence artificielle générative dans l’ensemble de la banque.

HSBC déploiera les modèles commerciaux de Mistral ainsi que leurs futures mises à jour sur une infrastructure auto-hébergée. Cette approche permettra de combiner les capacités technologiques internes du groupe bancaire avec l’expertise de Mistral dans la conception de modèles d’IA.

Les deux entreprises collaboreront au développement de solutions d’IA couvrant plusieurs usages : analyse financière, traduction multilingue, évaluation des risques ou encore communications personnalisées avec les clients.

Selon HSBC, ces outils pourraient réduire de manière significative le temps consacré par les employés aux tâches routinières ; par exemple, les équipes crédit et financement pourront analyser plus rapidement des dossiers complexes et volumineux.

HSBC utilise déjà des centaines de cas d’usage d’IA dans le monde, notamment en matière de détection de fraude, de surveillance des transactions, de conformité et de service client. La banque estime que l’accord avec Mistral AI permettra d’accélérer ses cycles d’innovation et de lancer plus rapidement de nouvelles fonctionnalités reposant sur l’IA.

The post HSBC signe avec Mistral AI appeared first on Silicon.fr.

Reçu — 27 novembre 2025

Après les datasets, Open-R1 cherche à reproduire le pipeline de DeepSeek

27 novembre 2025 à 16:06

Lorsqu’on prépare un dataset mixte pour le fine-tuning, il est possible de tirer parti d’une « propriété additive ».

Le rapport technique du modèle Phi-4 (de Microsoft) comprend une remarque à ce sujet.

La propriété en question permet d’optimiser le mix de données domaine par domaine puis de concaténer les poids qui en résultent, sans perte.
Open-R1 en a fait usage. Le projet, emmené par Hugging Face, a démarré en janvier 2025. Son objectif : créer une reproduction ouverte de DeepSeek-R1, en développant les « pièces manquantes ». À savoir datasets et code d’entraînement.

Le plan est décliné en trois temps :

  • Être capable de distiller un ensemble de données de raisonnement de haute qualité à partir de DeepSeek-R1
  • Répliquer le pipeline d’apprentissage par renforcement de R1-Zero
  • Appliquer cette combinaison à des modèles de base pour en faire des modèles de raisonnement

Les maths d’abord

Open-R1 a d’abord centré ses travaux sur un dataset de raisonnement mathématique : OpenR1-Math-220k. Publié sous licence Apache 2.0, il couvre 400 000 problèmes (2 à 4 traces pour chacun) tirés de NuminaMath-1.5. Filtré, il en conserve 220 000. On l’a divisé en deux parties. L’une, dite « par défaut », regroupe 94 000 problèmes et engendre les meilleures performances. L’autre, dite « étendue », réunit 131 000 problèmes… et ne produit pas d’aussi bons résultats, problablement parce que les questions sont plus simples.

En faisant travailler Qwen-7B-Math-Instruct pour trois cycles sur la partie « par défaut », Hugging Face affirme être parvenu à égaler la performance de DeepSeek-Distill-Qwen-7B. Il a, en l’occurrence, obtenu le même score sur AIME 25 (40) et fait un peu moins bien sur MATH-500 (90,6 vs 91,6).

Le code ensuite

Les travaux se sont ensuite étendus au codage, avec la production d’un dataset basé sur les compétitions CodeForces. Au menu, environ 10 000 problèmes (avec jusqu’à 5 traces), dont 60 % accompagnés de l’explication de la solution correcte par les organisatieurs.

Sur cette base, il a été demandé à R1 de produire des chaînes de pensée (environ 100 000 exemples), aboutissant au dataset CodeForces-CoTs. Publié sous licence ODC-BY, il a servi à affiner Qwen-2.5-Coder-Instruct 7B et 32B. En ont découlé les modèles OlympicCoder. Mis à l’épreuve sur la dernière Olympiade internationale d’informatique, ils ont rivalisé avec des LLM à l’état de l’art (le 32B s’en sortant même mieux que R1.

La science pour finir

Une partie de CodeForces-CoTs (83 000 traces de problèmes Python et C++) et d’OpenR1-Math-220k (la partie « par défaut ») a finalement été combinée à un sous-ensemble du dataset de post-entraînement de Llama Nemotron pour former Mixture-of-Thoughts. Au code et aux maths s’est donc ajoutée la science, pour un total d’environ 350 000 traces. Aucune licence n’a été ajoutée (c’est une demande régulière).

Cette base, appliquée à une variante de Qwen-2.5-Math-7B (fréquence RoPE de base étendue à 300k pour permettre l’entraînement sur une fenêtre de 32k), a produit OpenR1-Distill-7B. Le modèle s’est montré plus performant que R1-Distill-Qwen-7B sur AIME 2024 (52,7 vs 51,3), GPQA Diamond (52,8 vs 52,4) et LiveCodeBench v5 (39,4 vs 37,4). Ces scores s’entendent en pass@1 (un essai, avec 4 à 64 réponses par requête en fonction des tâches), à température 0,6 et top_p 0,95.

Mixture of Thoughts

Illustration principale générée par IA

The post Après les datasets, Open-R1 cherche à reproduire le pipeline de DeepSeek appeared first on Silicon.fr.

IA en santé : Inria et Doctolib s’associent

27 novembre 2025 à 12:58

Inria, l’Institut national de recherche en sciences et technologies du numérique, et Doctolib vont collaborer pour développer des modèles d’intelligence artificielle cliniques fiables et souverains dans le secteur de la santé, indiquent les deux acteurs.
Première étape :  la création d’une équipe de recherche réunissant doctorants, postdoctorants et ingénieurs de recherche des deux organisations pour travailler sur plusieurs axes stratégiques.

Quatre axes de recherche prioritaires

Elle travaillera sur le développement d’une IA médicale de confiance, notamment la protection des données, la transparence et le respect du patient. Les chercheurs s’attacheront  à créer des systèmes capables de suivre le raisonnement médical en comprenant les liens de cause à effet, en croisant symptômes, historique médical, contexte de vie et connaissances médicales pour estimer l’état de santé et son évolution.

Un troisième axe concerne le choix des meilleures actions de santé personnalisées, qu’il s’agisse de dépistages, vaccins ou changements de mode de vie. Cela nécessite des systèmes de raisonnement causal capables d’apprendre de données réelles tout en tenant compte des risques, coûts et préférences individuelles.

Enfin, l’équipe travaillera sur des systèmes capables de motiver durablement les changements de comportement en accompagnant les patients dans la durée, en s’adaptant à leur psychologie et leurs contraintes.

Deux projets en cours

L’équipe a débuté ses travaux sur deux sujets spécifiques. Le premier vise à optimiser le parcours de soins des patients en développant un modèle génératif capable de recommander des séquences optimales d’actions cliniques, afin de réduire l’errance médicale et améliorer la pertinence des soins.

Le second projet concerne l’établissement de diagnostics cliniques assistés par IA. L’équipe développe des méthodes pour quantifier l’incertitude des hypothèses diagnostiques et les faire évaluer par des praticiens sur des cas réels, l’IA restant un outil d’aide sans remplacer le jugement clinique.

Selon François Cuny, Directeur Général Délégué à l’Innovation chez Inria, ce partenariat s’inscrit dans une volonté de renforcer la collaboration entre Inria et les industriels français dans le secteur de la santé, en montant des projets communs, en soutenant les dynamiques entrepreneuriales et en attirant les meilleurs talents internationaux.

« Avec Inria et d’autres instituts de recherche de référence, nous construisons un laboratoire commun vers un système général d’intelligence médicale. Nous visons à créer en France, en Allemagne et en Europe un écosystème ouvert et collaboratif dans lequel les institutions publiques et privées pourront réaliser des avancées cliniques en IA pour améliorer la santé des personnes et celle des professionnels de santé.» explique Stanislas Niox-Chateau, le CEO, sur son compte LinkedIn.

The post IA en santé : Inria et Doctolib s’associent appeared first on Silicon.fr.

❌