Le Groupe Alain Afflelou a migré l’intégralité de son infrastructure depuis VMware ESXi vers l’hyperviseur Nutanix AHV. Une opération menée tambour battant en 2024, motivée par les incertitudes liées au rachat du champion de la virtualisation par Broadcom et l’augmentation des coûts.
Avec près de 1 500 points de vente répartis dans 19 pays (principalement France, Espagne, Belgique, Suisse et Portugal), le groupe d’optique et d’appareils auditifs fait face à une complexité IT particulière. Son modèle largement basé sur la franchise complique l’unification des environnements informatiques. La DSI, dirigée par Ludovic Tassy depuis 2006, s’appuie sur une expertise interne solide et des partenaires de confiance pour accompagner la croissance.
C’est dans ce contexte que la décision de quitter VMware s’est imposée. « Le passage à Nutanix a marqué un tournant : nous avons pu basculer notre infrastructure sans perturber les utilisateurs, tout en gagnant en performance et en visibilité », souligne le DSI.
Trois semaines pour tout migrer
La migration a été réalisée en trois semaines avec l’accompagnement de l’intégrateur SPIE, en s’appuyant sur Nutanix Cloud Infrastructure et l’outil Move. Bilan : près de 200 machines virtuelles et 200 To de données transférées sans interruption de service.
Le nouvel environnement repose sur deux clusters de trois nœuds chacun et un site témoin. Les gains sont au rendez-vous : performances applicatives multipliées par deux à trois sur certaines chaînes de traitement, compression des sauvegardes améliorée de 20 % et simplification de la gouvernance grâce aux fonctionnalités Prism, qui facilitent l’automatisation et le pilotage de l’exploitation.
Pour Nicolas Crochet, Responsable technique & Pôle Infrastructures, Nutanix s’est imposé comme la meilleure réponse aux enjeux de l’entreprise, en combinant maturité technologique, simplicité d’exploitation et efficacité opérationnelle. Ce choix offre à la DSI une infrastructure plus agile et réduit la dépendance aux modèles économiques imposés par les acteurs historiques du marché.
Cap sur 2026 : datacenter et convergence optique-audio
Le Groupe Alain Afflelou a déjà étendu ce déploiement en Espagne et prépare plusieurs projets complémentaires pour 2026 : refonte des cœurs de réseau et déménagement d’un datacenter.
Ces évolutions s’inscrivent dans une ambition plus large : harmoniser les logiciels de points de vente et consolider la donnée, afin de soutenir la convergence des activités optique et audio et de renforcer la qualité de service auprès des franchisés et des clients finaux.
Le Vibe Coding bouleverse les pratiques de développement informatique. En mêlant intelligence artificielle générative et langage naturel, cette approche hybride permet de produire du code à partir de simples instructions textuelles. Si elle promet accessibilité et productivité, elle soulève aussi des interrogations majeures en matière de sécurité, de maîtrise, de souveraineté numérique et de gestion des compétences.
À l’heure où l’IA entre dans la chaîne de production logicielle, les entreprises doivent repenser leur gouvernance du développement.
Derrière la promesse d’un développement plus rapide et plus accessible, le Vibe Coding introduit des enjeux structurants pour les entreprises : sécurité des applications, maîtrise des dépendances technologiques, souveraineté des environnements numériques et transformation profonde des compétences IT.
Cette approche s’appuie sur la capacité des grands modèles de langage à traduire une intention métier exprimée en langage naturel en code exécutable, un changement de paradigme qui appelle autant d’enthousiasme que de vigilance.
Le Vibe Coding redéfinit les pratiques de développement
Le Vibe Coding désigne la pratique avec laquelle une intelligence artificielle génère automatiquement du code à partir d’une intention exprimée en langage naturel. Pensé à l’origine pour des profils non techniques, il permet de créer des prototypes, des interfaces ou même des micro-applications sans passer par les langages de programmation traditionnels.
Contrairement aux outils no-code classiques qui reposent sur des interfaces visuelles, le Vibe Coding abaisse encore la barrière technique : c’est la formulation de l’idée qui suffit. Cela en fait une porte d’entrée puissante pour les porteurs de projets, les métiers ou les designers qui souhaitent tester une fonctionnalité sans dépendre d’une équipe de développement.
En entreprise, un levier d’agilité sous conditions
Si cette approche séduit les profils métiers, elle attire aussi l’attention des entreprises. Le Vibe Coding peut accélérer les phases de prototypage, réduire le time-to-market et fluidifier les échanges entre les métiers et la DSI.
Dans un contexte B2B, il peut par exemple être utilisé pour générer rapidement une base de code fonctionnelle à partir d’un cahier des charges, ou créer une interface de test pour valider une hypothèse utilisateur. Il devient alors un outil d’itération rapide, particulièrement pertinent dans les démarches agiles ou les POC.
Mais pour en tirer pleinement parti, il faut en maîtriser les risques. Car si l’IA est capable de produire du code, elle ne garantit ni sa robustesse, ni sa sécurité, ni sa conformité aux standards d’entreprise. Il faut également parler de la qualité du prompt. Pour avoir un résultat probant, la demande doit être claire et précise.
Encadrer la pratique, un impératif pour l’IT
Le code généré automatiquement peut introduire des vulnérabilités non intentionnelles, intégrer des patterns obsolètes ou contourner des règles critiques de sécurité. Si le prompt inclut des données sensibles, on court aussi le risque d’une fuite ou d’une réutilisation non maîtrisée par le modèle. Dans ce contexte, la sécurité-by-design ne peut pas être optionnelle.
Les organisations doivent intégrer, dès la production du code généré, des outils d’analyse statique de sécurité (SAST) et d’analyse de composition logicielle (SCA) au sein de leur pipeline CI/CD, afin d’auditer en continu la qualité et la sécurité du code.
La question de la traçabilité et de la gouvernance est également centrale. L’usage de modèles propriétaires, souvent hébergés sur des plateformes cloud externes, pose des problématiques de propriété intellectuelle, de souveraineté sur le code produit, et de biais algorithmique. Les DSI doivent établir une stratégie IA claire, incluant l’évaluation juridique des outputs, l’adoption potentielle de modèles open source internes, et la définition de politiques de confidentialité sur les prompts.
Conserver la maîtrise du code (output)
Il est essentiel que les développeurs conservent la maitrise du code. Le comprendre, le maitriser pour le valider et le faire évoluer.
Avec l’adoption massive du Vibe Coding, le risque serait d’engendrer une érosion des compétences techniques, en particulier chez les développeurs juniors. Une dépendance excessive aux suggestions de l’IA peut freiner l’apprentissage des fondamentaux : debug, optimisation, conception d’architectures robustes, ou gestion fine des performances.
La formation continue doit donc évoluer : elle ne doit plus uniquement porter sur la production de code, mais sur sa lecture critique, sa revue structurée, sa mise en conformité et son optimisation. Le développeur devient architecte-validateur, garant de la qualité globale du système. Des pratiques comme le pair programming augmenté par IA ou la revue croisée de code généré doivent être intégrées dans les workflows.
Le Vibe Coding constitue une évolution naturelle des outils d’assistance au développement. Bien intégré dans une démarche outillée et encadrée, il peut faire gagner un temps précieux, favoriser la co-création avec les métiers, et ouvrir la production logicielle à de nouveaux profils.
Sa mise en œuvre implique de repenser les processus de développement, les outils de sécurité, la gouvernance des modèles d’IA et la stratégie de formation. Comme souvent avec les technologies émergentes, ce n’est pas la promesse qui compte, mais la maturité avec laquelle on l’implémente.
De l’IA agentique naît le besoin de nouvelles architectures OLTP… comme le lakebase.
Fin janvier, Databricks publiait un rapport « State of AI Agents » mettant généreusement en avant ce postulat. Quelques jours plus tard, il annoncerait la disponibilité générale de sa propre offre lakebase*.
Au-delà de cette congruence, le rapport comprend quelques éléments chiffrés fondés sur la télémétrie de « plus de 20 000 clients ».
L’approche multi-LLM se répand
La proportion de clients utilisant au moins 3 LLM a tendance à s’accroître.
Mai-juillet 2025
Août-octobre
1 modèle
39 %
22 %
2 modèles
25 %
19 %
3+ modèles
36 %
59 %
Dans tous les secteurs économiques pris en considération, on a dépassé, sur la période d’août à octobre, les 50 % de clients exploitant au moins 3 LLM. Le taux le plus élevé – autour de 65 % – est dans le retail. Le secteur des utilities dépasse les 60 %, comme la santé, l’industrie et les services financiers.
Peu de batch, beaucoup de temps réel
En mai et octobre, 96 % des requêtes ont été traitées en temps réel, le reste l’étant par lots. Le secteur des technologies présente l’écart le plus important (32 requêtes real-time pour 1 batch). Suit la santé (13/1), probablement en reflet des situations critiques que gèrent les organisations de ce secteur.
La création des bases de données, largement « agentisée »
À partir de la télémétrie de Neon, base Postgre qui constitue le cœur de sa lakebase, Databricks déclare que la majorité des bases de données sont désormais créées par des agents IA. En l’occurrence, 80 % sur le mois d’octobre 2025, contre 27 % un an plus tôt. La création des branches (clonage) a suivi la même trajectoire (de 18 à 97 %).
Un usage « pragmatique » de l’IA
La veille de marché ressort comme le principal usage de l’IA dans l’écosystème Databricks sur l’échantillon concerné. Suivent la maintenance prédictive, le tri des demandes au support client, la customer advocacy et le traitement des réclamations. Le résumé des interactions client et des notes critiques apparaît en bas de la liste, comme l’analyse de sentiment.
Au global, 40 % des cas d’usages GenAI que recense Databricks automatisent des tâches routinières liées à l’expérience client.
Agora à l’état de concept ; agent.json en brouillon ; ANP en cours de finalisation ; MCP devenu « standard de fait ».
Ces quatre technologies en étaient à ces stades respectifs lorsque l’université Jiao-tong de Shanghai les a intégrées dans sa taxonomie des protocoles agentiques. C’était en mai 2025.
La taxonomie distinguait les protocoles orientés contexte et ceux axés sur la communication entre agents. Elle introduisait un deuxième niveau de segmentation, entre protocoles généralistes et protocoles spécialisés (ces derniers se divisant, sur la partie communication, entre humain-agent, robot-agent et système-agent).
Pas de suite favorable pour agents.json
Depuis, agents.json n’a pas connu de nouvelle version – la dernière date de février 2025. Le projet semble abandonné (démos non fonctionnelles, documentation en 404, invitation Discord expirée, chaîne YouTube non alimentée…). Wildcard, la start-up américaine instigatrice du projet, existe toujours. Elle s’est spécialisée dans le GEO (Generative Engine Optimization).
Le protocole étend la spécification OpenAPI pour permettre la définition de contrats guidant les LLM dans l’utilisation des API. Ces contrats contiennent un ou plusieurs appels décrivant un résultat. Une manière de conserver l’aspect non déterministe dans la réalisation des tâches tout en cadrant l’exploitation des outils.
L’approche est stateless. Les fichiers agents.json, préférentiellement hébergés dans un dossier /.well-known, sont exposés aux LLM en tant qu’outils via un SDK spécifique.
A2A, confié à la Fondation Linux
Google avait annoncé A2A (Agent-to-Agent) en avril 2025. Quelques semaines après la publication de la taxonomie, le confierait le protocole à la Fondation Linux.
A2A permet la communication entre des agents reposant sur des frameworks différents. Ils peuvent découvrir mutuellement leurs capacités (par le biais de cartes), négocier leurs modalités d’interaction et opérer sans exposer leur état interne, leur mémoire ou leurs outils. La communication est en JSON-RPC sur HTTP(S).
Un groupe de travail W3C autour d’ANP
ANP (AgentNetworkProtocol) était passé en v1 peu après la publication de la taxonomie. Depuis, la communauté qui en est à l’origine a pris la tête d’un groupe de travail AI Agent Protocol au sein du W3C. Avec, entre autres contributeurs, Google, Huawei et Microsoft.
Un brouillon de spécification a été publié fin janvier. On y retrouve les trois principaux modules constitutifs d’ANP : l’identité (sur la base du standard DID), ainsi que la description et la découverte des agents. La négociation de protocoles de communication entre agents est dynamique, sur la base de langage naturel. La v1 a introduit une proposition de framework transactionnel P2P et une option human in the loop.
AITP demeure en brouillon
Depuis la publication de la taxonomie, AITP (Agent Interaction and Transaction Protocol) est resté en brouillon. Ce protocole orienté Web3 est né sous l’impulsion de la NEAR Foundation, à l’origine d’une blockchain de couche 1. Il doit permettre aux agents d’échanger tous types de données structurées (éléments d’UI, formulaires, demandes de paiement…). Aux dernières nouvelles, des connexions sont établies avec le wallet NEAR. Les wallets EVM et SOL sont sur la roadmap.
ACP, devenu brique d’AGNTCY…
LangChain est l’instigateur d’ACP (Agent Connect Protocol). La spec englobe découverte, communication de groupe, identité et observabilité. Elle fait aujourd’hui partie de l’initiative AGNTCY, que Cisco porte pour créer « une stack pour l’Internet des agents » – et qui sous l’égide de la Fondation Linux depuis juillet 2025.
… comme AComp, fusionné avec A2A
AGNTCY exploite aussi AComp (Agent Communication Protocol). Celui-ci est également sous l’aile de la Fondation Linux, où il a fusionné avec A2A. Il est soutenu entre autres par AWS, Microsoft, Salesforce, SAP et Snowflake. On le doit à IBM, qui en a créé l’implémentation de référence en l’objet du framework BeeAI.
Par rapport à ACP, plutôt que d’imposer immédiatement des spécifications strictes, AComp se concentre sur le volet fonctionnel. Il est dit suffisamment simple pour ne pas nécessiter de SDK (des outils HTTP standards suffisent).
LMOS vise toujours la standardisation W3C
LMOS (Language Model Operating System) émane de la Fondation Eclipse. Il implémente l’architecture WoT (Web of Things) du W3C, à travers les couches identité, transport et application, autour du format JSON-LD.
Le projet a un opérateur Kubernetes et un routeur, intégrés en un runtime. Ainsi qu’un langage basé sur Kotlin pour développer des agents. Il n’est pas encore entré dans la procédure de standardisation W3C.
Agent Protocol a changé de mains
La dernière version (v1) d’Agent Protocol remonte à 2024. Cette année-là, la fondation qui avait créé ce protocole l’a transmis à une start-up qui développe un assistant IA pour smartphones.
Construit sur OpenAPI, Agent Protocol définit une interface unifiée pour la gestion du cycle de vie. Il introduit des abstraction comme les runs (exécution de tâches), les threads (gestion des interactions à plusieurs tours) et les stores (mémoire à long terme).
Des protocoles d’origine académique restés des concepts
L’université Jiao-tong avait inclus, dans sa taxonomie, plusieurs protocoles issus du monde académique qui étaient alors à l’état de concept. Aucun ne semble aujourd’hui avoir de grande implémentation référente.
Parmi eux, Agora, made in université d’Oxford. Sa dernière version remonte à janvier 2025. Il permet aux agents de créer des protocoles ad hoc sur la base de documentation YAML.
Avec PXP (Predict and eXplain Protocol), issu d’un institut technologique indien, on est dans la communication humain-agent. Le protocole implique un système de tableau blanc et un planificateur qui assure l’alternance des tours de discussion.
Dans le même domaine, il y a LOKA (Layered Orchestration for Knowledgeful Agents), de Carnegie Mellon. Se nourrissant de standards comme DID et VC (Verified Credentials), il met en œuvre un système de consensus décentralisé fondé sur des règles d’éthique partagées.
CrowdES est un protocole de type robot-agent né à l’université de science et de technologie de Gwangju (Corée du Sud). Conçu pour gérer des comportements de groupe, il inclut un « émetteur » et un « simulateur ». Le premier utilise des modèles de diffusion pour assigner des attributs individuels (types d’agents, vitesse de déplacement…) sur la base d’informations spatiales extraites d’images en entrée. Le second génère des trajectoires et des interactions grâce à un mécanisme de changement d’état basé sur des chaînes de Markov.
L’université de Liverpool a emmené les travaux sur la famille de protocoles dit SPP (Spatial Population Protocols). Ils permettent à des robots de s’accorder sur un système de coordonnées, même lorsque celui-ci est arbitraire et que leurs positions de départ le sont éventuellement aussi. Chaque robot peut mémoriser une ou plusieurs coordonnées et analyser la distance vis-à-vis d’autres robots lors des interactions. Le calcul de cette distance peut reposer sur un « leader » pour ancrer le système de coordonnées.