Vue normale

Edge Gallery - IA Google en local sur smartphone

Par : Korben
24 janvier 2026 à 16:04

Vous voulez faire tourner des modèles d'IA directement sur votre téléphone, sans envoyer vos données à un serveur distant ?

Ça tombe bien puisque Google a sorti Edge Gallery , une application open source qui permet d'exécuter des LLM et des modèles multimodaux en local sur Android et iOS. Et vu que c'est sous licence Apache 2.0, personne ne pourra vous la retirer... même si Google décide un jour de passer à autre chose ^^.

Vous l'aurez compris, ce qui est cool avec cette app c'est que tout se passe sur l'appareil. Vos conversations avec l'IA, vos photos analysées, vos notes audio transcrites... rien ne quitte votre smartphone. Et visiblement, ça plaît puisque l'app a dépassé les 500 000 téléchargements en seulement deux mois après sa sortie sur GitHub.

Et comme je sais que parmi vous, y'a pas mal de paranos comme moi et de gens qui ne prennent pas leurs médicaments (pas comme moi), je pense que c'est le genre de solution qui va vous faire plaisir !

Ce qu'on peut faire avec

Edge Gallery embarque plusieurs fonctionnalités qui couvrent pas mal de cas d'usage du quotidien. Concrètement, vous avez :

AI Chat pour discuter avec un LLM comme vous le feriez avec ChatGPT, sauf que tout reste en local. Pratique pour brainstormer, rédiger des mails ou juste poser des questions sans connexion internet.

Ask Image pour analyser vos photos. Vous prenez un truc en photo et vous demandez à l'IA de vous expliquer ce que c'est. Ça marche pour identifier des plantes, décrypter une facture, ou comprendre un schéma technique.

Audio Scribe pour transcrire de l'audio en texte. Vous enregistrez une réunion, une interview, ou vos propres notes vocales, et hop, ça devient du texte exploitable. Et depuis la dernière mise à jour, vous pouvez même traduire directement dans une autre langue.

L'interface d'AI Edge Gallery sur Android

Prompt Lab pour les développeurs qui veulent tester leurs prompts et benchmarker les différents modèles disponibles. Y'a même des métriques en temps réel (temps de première réponse, vitesse de décodage, latence) pour les geeks de l'optimisation.

Tiny Garden, c'est le petit bonus rigolo : un mini-jeu expérimental entièrement offline où vous utilisez le langage naturel pour planter, arroser et récolter des fleurs. Bon, c'est gadget, mais ça montre bien les possibilités du truc.

Mobile Actions pour les plus aventuriers. Vous pouvez utiliser une recette open source pour fine-tuner un modèle, puis le charger dans l'app pour contrôler certaines fonctions de votre téléphone en offline. C'est encore expérimental, mais ça peut donner des idées intéressantes.

Les modèles disponibles

L'app propose plusieurs modèles selon vos besoins. On retrouve la famille Gemma de Google (Gemma 3 en 1B et 4B paramètres, Gemma 3n optimisé pour les appareils plus modestes et qui gère maintenant l'audio), mais aussi des modèles tiers comme Qwen2.5, Phi-4-mini de Microsoft, ou encore DeepSeek-R1 pour ceux qui veulent du raisonnement plus poussé.

Et les gardes fous sont facilement contournables...

Il y a aussi des modèles spécialisés comme TranslateGemma pour la traduction (55 langues supportées) et FunctionGemma pour l'appel de fonctions et tout ce petit monde tourne grâce à LiteRT , le runtime léger de Google pour l'inférence on-device.

D'ailleurs, la communauté Hugging Face propose déjà pas mal de modèles convertis au format LiteRT donc si les modèles par défaut ne vous suffisent pas, vous pouvez aller fouiller dans leur collection pour trouver votre bonheur. Et pour les plus aventuriers, vous pouvez même charger vos propres modèles au format .litertlm.

Installation sur Android

Pour Android, c'est simple, direction le Play Store et vous cherchez "AI Edge Gallery". Vous pouvez aussi télécharger l'APK directement depuis les releases GitHub si vous préférez. Il vous faut Android 12 minimum et un appareil avec au moins 4 Go de RAM (8 Go recommandés pour les gros modèles).

Au premier lancement, l'app vous propose de télécharger les modèles. Comptez entre 500 Mo et 4 Go par modèle selon la taille. Une fois téléchargés, ils sont stockés localement et vous n'avez plus besoin de connexion pour les utiliser.

Et sur iOS / macOS ?

Pour iOS, l'app est disponible en bêta via TestFlight . Attention, c'est limité à 10 000 testeurs (premier arrivé, premier servi), et il faut un appareil avec minimum 6 Go de RAM. Moi c'est ce que j'utilise et comme c'est pas encore la version finale, il manque quelques trucs mais ça fonctionne. Google vise une sortie officielle sur l'App Store début 2026. J'ai hâte !

Pour macOS par contre... il n'y a pas de version native. L'app est pensée pour le mobile uniquement donc si vous voulez vraiment tester sur votre Mac, la solution c'est de passer par un émulateur Android comme Android Studio (avec l'émulateur intégré) ou BlueStacks. BlueStacks Air est d'ailleurs optimisé pour les Mac Apple Silicon. C'est pas idéal mais ça dépanne.

Cela dit, si vous êtes sur Mac et que vous voulez faire tourner des LLM en local, regardez plutôt du côté d'Ollama ou de LM Studio qui sont nativement compatibles.

Pourquoi c'est intéressant ce truc ?

L'intérêt principal, c'est évidemment la confidentialité. Vos données ne transitent jamais par des serveurs externes donc vous en gardez le contrôle total. C'est particulièrement pertinent si vous bossez avec des documents sensibles ou si vous êtes simplement attaché à votre vie privée.

L'autre avantage, c'est que ça fonctionne hors ligne. Dans le métro, en avion, en zone blanche... votre IA reste disponible. Pas de latence réseau, pas de "serveur surchargé, réessayez plus tard".

Et puis le fait que ce soit open source, ça ouvre pas mal de portes car la communauté peut contribuer, ajouter des modèles, corriger des bugs et même si Google abandonne le projet (ce qui ne serait pas une première), le code restera là et on pourra faire des forks ! (Pourquoi attendre en fait ??)

Voilà, pour ceux qui veulent creuser, le wiki GitHub du projet contient pas mal de documentation sur l'ajout de modèles personnalisés et l'utilisation avancée de l'API LiteRT.

Éclatez-vous bien !

CoreML CLI - Gérez vos modèles Apple sans Xcode !

Par : Korben
24 janvier 2026 à 11:46

Si vous bidouillez un peu avec des modèles CoreML sur votre Mac Silicon, vous savez que c'est vite la croix et la misère comme je dis souvent... Car dès qu'il s'agit de tester un truc rapide, faut ouvrir Xcode, pisser du Swift, ou se battre avec des scripts Python... Bref, l'usine à gaz juste pour vérifier une prédiction vite fait.

Hé bien bonne nouvelle les amis, un petit outil en ligne de commande vient de sortir pour nous éviter de trop galérer.

Ça s'appelle coreml-cli et comme son nom l'indique, c'est une interface pour inspecter et lancer vos modèles depuis le terminal. L'objectif c'est de pouvoir manipuler vos fichiers .mlmodel sans jamais avoir besoin de lancer l'IDE d'Apple.

Si vous êtes chaud bouillant, ça s'installe hyper facilement via Homebrew :

brew tap schappim/coreml-cli
brew install coreml-cli

Et une fois que c'est là, vous pouvez TOUT faire. Genre vous voulez voir ce qu'il y a dans un modèle ? Hop, un petit coreml inspect MobileNetV2.mlmodel et vous avez toute la structure, les entrées et les sorties qui s'affichent.

Et pour lancer des prédictions, c'est également très simple plus simple. Par exemple, avec le modèle MobileNet qui détecte les objets présents dans une image, vous lui donnez une image, et avec l'option --json, il vous sort le résultat proprement.

coreml predict MobileNetV2.mlmodel --input photo.jpg --json

Et pour ceux qui veulent automatiser des traitements, le mode "batch" permet de traiter tout un dossier d'images d'un coup. C'est quand même plus rapide que de le faire à la main un par un, comme le ferait un ingé de Perpignan nourri aux graines de chia.

Le développeur a même intégré un outil de benchmark pour mesurer la latence. Ça vous permet de lancer des tests sur le CPU, le GPU ou le fameux Neural Engine d'Apple pour comparer les perfs. C'est le top pour optimiser vos apps avant de les déployer.

Du coup, si vous bossez avec de l'IA locale sur Mac, un peu comme ce qu'on a déjà testé par le passé avec MocoLlamma ou sur de gros clusters Mac Studio comme ce furieux, ce petit binaire risque de vite devenir indispensable dans vos scripts CI/CD.

Amusez-vous bien !

Source

Tau5 - Le successeur de Sonic Pi se met à l'IA

Par : Korben
24 janvier 2026 à 10:07

Vous connaissez Sonic Pi, ce logiciel génial pour coder de la musique que je vous ai déjà présenté ? Hé bien Sam Aaron, son créateur, remet le couvert avec son nouveau projet baptisé Tau5.

Si vous avez déjà testé le live coding, vous savez comme moi que c'est une joie totale de pouvoir balancer des boucles en tapant quelques lignes de code, mais là Sam pousse le délire beaucoup plus loin. Ce nouveau joujou, c'est un peu le grand frère de Sonic Pi, pensé dès le départ pour la collaboration, mais aussi la sécurité et la compatibilité web.

Sam Aaron lors de sa keynote GOTO 2025

L'ambition de Tau5 c'est que l'outil puisse à terme intégrer des agents IA via le protocole MCP. Bien sûr, l'objectif n'est pas de remplacer le musicien (ouf !), mais de lui offrir un partenaire d'improvisation qui pourrait l'aider à crafter des boucles ou ajuster des paramètres. C'est en tout cas la vision que Sam a partagée lors de sa keynote au GOTO 2025.

Sous le capot, le système repose sur la machine virtuelle Erlang (BEAM), sur laquelle tourne aussi Elixir. C'est une architecture connue pour sa tolérance aux pannes, comme ça même si vous faites une erreur de syntaxe en plein set, le système encaisse sans que tout s'effondre et vous colle la honte avec des gens qui viendront vous dire à la fin de votre concert : "Hahaha, c'est nul t'es trucs d'IA, ça marche pas, tu vois bien que l'humain n'est pas prêt d'être remplacé ! Hahaha, loser"

Pour ceux qui se demandent ce que ça change par rapport à Sonic Pi, c'est surtout la dimension collaborative qui est mise en avant pour le futur. Avec cette nouvelle mouture, l'objectif c'est de permettre à plusieurs personnes de coder ensemble, potentiellement assistées par une IA. Je trouve que c'est une évolution de la création musicale par ordi plutôt logique vers quelque chose de plus connecté.

Si le sujet vous branche, je vous remets le lien vers mon article sur la découverte de Sonic Pi , histoire de voir d'où on part. Bref, tout ça reste trèss fidèle à la philosophie de Sam qui est depuis le début de rendre le code accessible et créatif à tous.

Bref, si vous aimez la musique, le code, ou juste voir des gens brillants repousser les limites, jetez un œil à sa présentation ou au dépôt GitHub .

❌