Vue normale

Reçu — 14 novembre 2025

ScribeOCR - Corrigez vos erreurs d'OCR directement dans le navigateur (en local)

Par :Korben
14 novembre 2025 à 05:23

Y’a plein d’images et de scans en PDF sur le net ou sur votre disque dur, qui sont difficilement exploitable / indexables parce que la reconnaissance de caractères n’a pas bien fonctionné. L’OCR automatique a par exemple transformé un mot-clé en charabia et c’est illisible. Du coup, ce passage est perdu dans les limbes et impossible de le retrouver avec une simple recherche textuelle. C’est moche.

Faut dire que le problème est réel car quand on numérise des millions de livres avec un OCR à 90% de précision, ça a l’air génial, sauf que les 10% d’erreurs ne sont pas aléatoires. C’est toujours les mêmes confusions qui reviennent : “A” qui devient “H”, “C” qui devient “G”, “22” qui se transforme en “55”. Et pour les documents historiques avec des polices anciennes, c’est encore pire.

Heureusement, il existe un outil gratuit et open source qui tourne dans votre navigateur et qui va vous permettre de corriger ces milliers d’erreurs OCR sans envoyer vos docs sur les serveurs de Google, Microsoft ou je ne sais quoi d’autre. Cela s’appelle ScribeOCR et vous allez l’adorer !

Pourquoi ? Hé bien parce que c’est un éditeur d’OCR open-source qui tourne à 100% dans votre navigateur, donc aucune donnée n’est envoyée sur le net et parce qu’il est capable de corriger toutes les erreurs efficacement ! L’interface affiche le texte OCRisé par-dessus l’image source, comme ça, vous voyez immédiatement où sont les problèmes et vous corrigez tout ça en série.

Et surtout ScribeOCR génère une police custom pour chaque document. Ça vous laisse garder l’apparence originale du doc, tout en ayant un texte parfaitement indexable pour des recherches par exemple. Vous obtenez ainsi un PDF qui ressemble au document d’origine mais où chaque mot est cliquable et cherchable. Bref, c’est super pratique si vous numérisez des archives ou des vieux bouquins.

L’outil supporte plusieurs moteurs OCR dont Tesseract LSTM et Legacy et vous pouvez ajuster les paramètres de reconnaissance selon le type de document : vitesse, qualité, langue…etc. Y’a même des options avancées pour le debug et l’optimisation des polices.

L’outil permet donc de créer des PDF recherchables à partir de scans (c’est le cas classique) mais également de corriger des données OCR existantes, y compris les fichiers HOCR de Tesseract. Et pour numériser complètement des documents ou livres anciens, l’interface de correction vous aidera à faire de l’excellent travail !

Le projet est open-source (licence AGPL-3.0) , ce qui veut dire que vous pouvez l’auto-héberger si vous voulez. Ainsi, pour l’installer en local, c’est très simple :

git clone --recursive https://github.com/scribeocr/scribeocr.git
cd scribeocr
npm i
npx http-server

Mais si vous voulez juste tester, y’a une démo sur scribeocr.com . Vous uploadez votre fichier, vous choisissez votre langue et votre moteur OCR, et hop c’est parti mon kiki.

Et pour les sorties, vous avez le choix : PDF, DOCX, HTML et d’autres formats. Vous pouvez même ajuster les paramètres d’export selon vos besoins. Auto-rotation, optimisation de police, tout est configurable !

Bref, au final ScribeOCR répare ces angles morts bien relou de la numérisation massive de documents sans que vous ayez à sacrifier votre vie privée !

Et ça c’est cool !

Reçu — 4 novembre 2025
Reçu — 28 octobre 2025

Les modèles de vision gagnent du terrain dans l’OCR

28 octobre 2025 à 15:29

La plupart des documents sont conçus pour être lus par des humains. Partant, ils peuvent être analysés de façon plus approfondie par des modèles de vision que par des modèles de langage.

Le projet Colette repose sur ce postulat. Cofinancé par Airbus, le CNES et la société toulousaine Jolibrain, il a produit un logiciel open source de déploiement de LLM avec une brique de RAG visuel (tous les documents sont transformés et analysés sous forme d’images).

Colette s’appuie sur une architecture qui a ses racines à CentraleSupélec : ColPali. Présentée début 2025, elle met à profit un VLM entraîné pour indexer des documents purement à partir de leurs caractéristiques visuelles.

ColPali

ColPali se retrouve aussi, entre autres, chez Morphik. Cette start-up Y Combinator a focalisé son offre sur le RAG. Elle a amélioré les performances en exploitant la méthode MUVERA – qui permet de contourner l’approche multivectorielle de ColPali – et la base de données vectorielle Turbopuffer.

DeepSeek-OCR : la modalité image comme moyen de compression

DeepSeek étudie également cet aspect. Il y a récemment consacré un article scientifique, sous un angle particulier : la modalité vision comme moyen de compresser l’information textuelle.

Ses travaux se matérialisent avec l’architecture DeepSeek-OCR. En son centre, DeepEncoder, qui encode les documents sous forme « tokens image ». Il exploite un modèle SAM (segmentation avec attention locale par fenêtre) et un modèle CLIP (attention globale). Avec, entre les deux, un module convolutionnel de sous-échantillonnage.

DeepEncoder compte environ 380 millions de paramètres (80 pour le SAM, 300 pour le CLIP). Il gère deux modes d’entrée. D’un côté, la résolution native (4 modes : Tiny et Small, où les images sont directement redimensionnées ; Base et Large, où on utilise du padding pour préserver le ratio d’origine). De l’autre, la résolution dynamique (combinaison de deux résolutions natives ; Gundam, par exemple, associe du 640 x 640 en attention locale et du 1024 x 1024 en attention globale).

résolutions

Le décodage est dévolu à un modèle DeepSeek MoE 3B à 570 millions de paramètres actifs (6 experts actifs sur 64 + 2 experts partagés).

On a d’abord entraîné DeepEncoder, puis DeepSeek-OCR dans son ensemble, à partir de deux jeux de données. L’un comprenant des PDF dans une centaine de langues avec éventuellement des images intégrées. L’autre axé sur des éléments spécifiques : graphes, formules chimiques, figures géométriques planes…

La perspective d’un mécanisme d’oubli graduel

DeepSeek-OCR a notamment été mis à l’épreuve sur un sous-ensemble du benchmark Fox. En l’occurrence, des documents en anglais comprenant de 600 à 1300 tokens texte. C’est de là que DeepSeek tire les principaux indicateurs de performance qu’il annonce en introduction de son article.

Avec un rapport de compression de 9-10x (1 token image pour 9 ou 10 tokens texte), le décodeur avoisine 97 % de précision OCR. Au-delà, les performances baissent (90 % à 10-12x, 60 % à 20x). DeepSeek y voit deux raisons. D’une part, le rapport entre la longueur des documents et la complexité de leur disposition. De l’autre, le fait qu’aux résolutions les plus basses (Tiny et Small), les textes longs deviennent « flous ».

Fox

Le premier élément peut être résolu par un rendu sur une page à disposition unique, estime DeepSeek. Le second peut être mis à profit pour reproduire une forme de mécanisme d’oubli : l’historique « froid » serait converti en images qui seraient ensuite progressivement compressées.

L’approche est, globalement, d’autant plus intéressante qu’elle n’occasionne pas de surcharge (les systèmes multimodaux exigent intrinsèquement un encodeur de vision).

Des diapos aux journaux, la nécessité de plusieurs modes d’encodage

En « conditions réelles » (OmniDocBench), DeepSeek retient que :

  • Le mode Small (100 tokens) produit de meilleurs résultats que GOT-OCR2.0 avec 2,5 fois moins de tokens.
  • Le mode Large (400 tokens) est au niveau des modèles OCR à l’état de l’art.
  • Avec moins de 800 tokens, la méthode Gundam s’en sort mieux que MinerU2.0 avec environ 7000 tokens.

OmniDocBench

Certaines catégories de documents nécessitent peu de tokens pour un résultat satisfaisant. Les diapositives, par exemple (64 tokens suffisent). Pour les livres et les rapports, 100 tokens est l’idéal. Avec les journaux (4000 à 5000 tokens), le mode Gundam, voire Gundam-master, est nécessaire.

DeepSeek annonce que son architecture est capable de générer 33 millions de pages de données par jour en utilisant 20 nœuds de 8 GPU A100-40G.

Illustration principale générée par IA

The post Les modèles de vision gagnent du terrain dans l’OCR appeared first on Silicon.fr.

❌