Vue normale

Les IA qui se trompent visent-elles le mauvais objectif ?

3 février 2026 à 16:25

Plus l’IA devient capable, plus on lui confie des tâches importantes… et plus les risques potentiels en cas d’échec augmentent.

Une étude réalisée dans le cadre du programme Anthropic Fellows creuse cet aspect sous un angle : le désalignement des modèles. Ses auteurs ont tenté de déterminer dans quelle mesure les échecs découlent de ce phénomène. Leur démarche a reposé sur une décomposition biais-variance. Le biais correspond à la poursuite cohérente d’un mauvais objectif. Autrement dit, il traduit le désalignement. Tandis que la variance révèle un simple comportement incohérent ne coucourant pas à un objectif spécifique.

Pour mener l’expérience, on s’assure évidemment de bien définir chaque objectif de départ.

Le degré d’incohérence augmente avec la temps de raisonnement

Claude Sonnet 4, o3-mini, o4-mini et la famille Qwen3 ont été évalués, entre autres, sur :

  • Questions à choix multiple (GPQA pour les sciences, MMLU pour la culture générale)
  • Codage agentique (SWE-bench)
  • Alignement (sous-ensemble de MWE, avec le format choix multiple d’origine et une adaptation en format ouvert)
  • Optimisation (minimisation d’une fonction quadratique par prédiction de tokens)

De manière générale, les erreurs constatées sont principalement une question d’incohérence.

Peu importe la difficulté de la tâche, le degré d’incohérence (part de la variance dans l’erreur) augmente avec la durée de raisonnement et/ou le nombre d’actions effectuées.

Plus les modèles IA sont gros, plus l’incohérence à tendance à diminuer sur les tâches simples… et à augmenter sur les complexes.

incohérence IA selon les tâches
Résultats sur la famille Qwen3

Des pistes pour réduire les incohérences des IA

incohérence optimisationSur l’exercice d’optimisation, l’incohérence augmente à chaque étape pour tous les modèles testés. Les plus petits arrivent plus vite à un point où il leur est impossible de suivre la bonne trajectoire, en conséquence de quoi la variance se réduit. Avec les gros modèles, le biais se réduit davantage, suggérant qu’ils acquièrent plus vite la capacité à converger sur le bon objectif qu’à maintenir de longues séquences d’actions cohérentes.

optimisation de fonction

Sur tous les modèles testés sauf Claude Sonnet 4, accroître le budget de raisonnement réduit parfois le degré d’incohérence. Cet effet ne compense néanmoins pas la variation « naturelle » sus-évoquée. Il s’explique peut-être par de meilleures propriétés de retour sur trace et de correction d’erreur – phénomène en tout cas observé lors de l’enraînement avec de plus grands budgets de raisonnement.

L’approche ensembliste (combinaison de plusieurs trajectoires) réduit aussi le degré d’incohérence. Peu pratique à mettre en place dans des boucles d’action « réelles », elle démontre toutefois l’efficacité potentielle d’autres méthodes de correction d’erreurs.

budgets et approche ensembliste
Approche ensembliste expérimentée avec GPT-4o mini

À consulter en complément, une autre analyse, émanant directement d’Anthropic. Elle témoigne, au contraire, de la prévalence du désalignement. Une quinzaine de modèles ont été déployés en autonomie avec des objectifs commerciaux légitimes. Confrontés à des menaces de remplacement ou à des conflits avec la nouvelle direction stratégie de leur organisation, ils ont adopté des comportements malveillants : chantage envers des responsables, fuites d’informations sensibles vers des concurrents…

Illustration principale © maylim – Adobe Stock

The post Les IA qui se trompent visent-elles le mauvais objectif ? appeared first on Silicon.fr.

SpaceX et xAI fusionnent pour créer un colosse de 1 250 milliards $

3 février 2026 à 11:58

SpaceX va acquérir xAI dans le cadre d’un échange d’actions qui valorise l’ensemble du nouvel groupe autour de 1 250 milliards $.

Cette opération de fusion-acquisition complète intègre xAI au sein de SpaceX, qui devient ainsi la maison mère d’une plateforme combinant fusées, réseau Starlink, intelligence artificielle Grok et services numériques associés. Les actionnaires de xAI recevront des titres SpaceX selon un ratio prédéfini.

La transaction intervient à un moment stratégique, en amont d’une introduction en Bourse envisagée pour SpaceX. L’opération valorise SpaceX proche de 1 000 milliards $ et xAI autour de 250 milliards. Cette consolidation vise à simplifier la structure capitalistique et à renforcer le profil de croissance perçu par les investisseurs.

Une intégration verticale espace-IA

L’enjeu industriel majeur réside dans le couplage des capacités d’intelligence artificielle de xAI avec les activités spatiales de SpaceX. Les modèles Grok et les infrastructures d’entraînement de xAI sont appelés à intervenir dans la conception de lanceurs, la planification de missions et la gestion de la chaîne logistique.

Le projet le plus ambitieux consiste à utiliser Starlink et des centres de données en orbite pour héberger et exécuter des modèles d’IA. L’objectif est de réduire la dépendance aux data centers terrestres, optimiser la consommation énergétique et limiter les contraintes de refroidissement.

L’IA de xAI doit également améliorer la conception des fusées, la détection d’anomalies en vol, la maintenance prédictive et l’optimisation des trajectoires, créant des boucles de rétroaction entre données de vol et entraînement des modèles. La fusion consolide par ailleurs les capacités duales civil-défense du groupe. SpaceX dispose déjà de nombreux contrats avec le Pentagone et les agences de renseignement, tandis que xAI commence à nouer des partenariats dans la défense, notamment pour des usages en logistique et analyse de renseignement.

Une diversification des revenus

Sur le plan commercial, cette fusion vise à justifier des multiples de valorisation plus élevés en présentant aux marchés une histoire de croissance unifiée avant l’introduction en Bourse. Au-delà des lancements et de Starlink, le nouvel ensemble ambitionne de proposer des offres de services d’IA adossées à l’infrastructure spatiale : connectivité augmentée, traitement de données en orbite, services temps réel pour entreprises et gouvernements.

Face aux autres acteurs de l’IA, xAI peine à rivaliser en part de marché avec OpenAI ou Anthropic. Mais son ancrage dans un actif industriel rentable et stratégique comme SpaceX lui confère un positionnement différenciant, basé sur la maîtrise conjointe de l’infrastructure physique et des modèles d’IA.

La taille et la nature stratégique du nouvel ensemble devraient accroître son pouvoir de négociation vis-à-vis des États et grands comptes. Cette concentration expose néanmoins le groupe à un contrôle accru sur les questions de concurrence, de sécurité nationale et de gouvernance des systèmes d’IA.

Image : © DR Space X

The post SpaceX et xAI fusionnent pour créer un colosse de 1 250 milliards $ appeared first on Silicon.fr.

GitHub cherche à alléger la charge du code généré par IA

3 février 2026 à 11:47

À l’heure du codage par IA, il est d’autant plus important de s’assurer que les contributeurs comprennent ce qu’ils proposent.

Un des ateliers de la FOSDEM 2026 a abordé cet aspect. Le contexte : une réflexion au sujet de la charge qui pèse sur les mainteneurs de projets open source.

Référence y est faite dans une discussion sur GitHub. Avec une question : que pourrait faire la plate-forme pour motiver les contributeurs à passer du temps sur les explications (descriptions de problèmes et de features) plutôt que sur la soumission de code ?

Là n’est cependant pas le thème principal de cette discussion. À travers elle, GitHub fait plutôt part de ses perspectives concernant la gestion des PR.

À court terme, il propose aux mainteneurs des options pour les désactiver complètement, les restreindre aux collaborateurs et les supprimer depuis l’UI.

Sur le long terme, GitHub envisage une solution « intermédiaire » permettant de conditionner l’ouverture de PR au respect de critères. Il songe aussi à exploiter l’IA pour évaluer le respect des standards/guidelines des projets.

Pour les guidelines, la source de vérité pourrait être le fichier CONTRIBUTING.md.

GitHub invité à envisager la désactivation automatique de Copilot

Beaucoup de projets veulent partager du code sans créer un entonnoir de contributions publiques, confirme un participant qui approuve les perspectives à court terme. Les mesures de contournement actuelles – des bots qui ferment les PR – ajoutent du bruit et sont peu intuitives, précise-t-il. Et de suggérer, concernant la vision à plus long terme, de pouvoir faire la différence entre contributeurs passagers et contributeurs externes de confiance sans avoir à donner d’accès collaborateur complet.

On suggère aussi à GitHub de quoi restreindre les contributeurs « nouveaux » – par exemple, dont la première interaction remonte à moins de 48 heures – à un seul PR. Ou encore d’obliger la liaison de tout PR à un ticket ou à une discussion.

Sur le volet IA, on suggère à GitHub un système de seuils configurables au niveau du dépôt ou de l’organisation. Et la désactivation automatique de Copilot sur les repos dont la politique interdirait l’usage.

Illustration générée par IA

The post GitHub cherche à alléger la charge du code généré par IA appeared first on Silicon.fr.

Oracle AI Database finalement disponible on-prem

3 février 2026 à 10:10

Cette fois-ci, c’est la bonne : après plusieurs reports, Oracle AI Database est finalement disponible sur matériel standard. Pour le moment, les serveurs x86-64. Cela concerne les éditions Enterprise et Free.

En parallèle, le branding évolue : exit Oracle AI Database 23ai, place à la version 26ai. De l’une à l’autre, l’architecture interne n’évolue pas. Les API non plus. Il n’y a donc pas besoin d’un upgrade, ni de recertifier les applications. Le statut de LTS est conservé et avec elle, la politique de support (fin de la première phase au 31 décembre 2031).

La migration depuis les versions 19c et 21c peut se faire sans passer par la 23ai.

Vecteurs, index, algos… Oracle muscle sa recherche vectorielle

C’est donc la première fois qu’une version « estampillée IA » est disponible on-prem, hors systèmes Oracle (Exadata, ODA, PCA). Même si certaines fonctionnalités de la 23ai ont été rétroportées vers la 19c.

Parmi les nouveautés de la version 26ai :

  • Vecteurs binaires et vecteurs épars
  • Nouvel mesure de distance vectorielle (Jaccard)
  • Checkpoints disque pour accélérer la reconstruction des index HNSW en mémoire
  • Réorganisation automatique des index IVF
  • Gestion des modèles ONNX en tant qu’objets first-class

Côté sécurité, le firewall SQL – qui nécessite une licence spécifique – est désormais inclus dans Oracle Database.
La version 26ai apporte la prise en charge de TLS 1.3 et simplifie la mise en œuvre du protocole (les clients ne doivent plus nécessairement fournir de portefeuille de certificats racines, notamment). Le chiffrement TDE passe à AES-256 par défaut et la longueur maximale des mots de passe passe de 30 à 1024 octets. La cryptographie post-quantique arrive, avec ML-DSA pour la signature des certificats et ML-KEM pour l’échange de clés (éventuellement hybridé avec ECDHE).

RAC (Real Application Clusters) devient déployable en environnement de conteneurs. Tandis que le patching est séparé en deux phases (préparation, activation) pour réduire l’impact sur la disponibilité.

Illustration © Greentech – Adobe Stock

The post Oracle AI Database finalement disponible on-prem appeared first on Silicon.fr.

❌