Vue normale

Reçu — 12 janvier 2026

GenAI : l’Autorité de la concurrence bascule en aval de la chaîne

12 janvier 2026 à 13:42

Dans son analyse du secteur de l’IA générative, l’Autorité de la concurrence va désormais voir en aval. Elle s’est effectivement autosaisie pour se pencher sur les chatbots.

En la matière, le paysage concurrentiel apparaît dynamique, avec la présence de plusieurs acteurs, note-t-elle. Mais les derniers développements montrent que les chatbots pourraient avoir un impact sur le fonctionnement de plusieurs secteurs-clés de l’économie.

L’autorité entend examiner cet aspect en s’intéressant notamment au commerce agentique. La relation entre chatbots et moteurs de recherche n’est en revanche pas dans le champ d’analyse, précise-t-elle.

Le volet énergétique et environnemental, déjà analysé

Son premier avis sur le secteur avait été publié en juin 2024. Il traitait essentiellement de l’amont de la chaîne de valeur. Y furent soulignés, entre autres, la dépendance envers CUDA, le verrouillage potentiel inhérent à l’octroi de crédits cloud pour les start-up de la GenAI et les risques en termes d’accords de non-débauchage et de fixation de salaires.

Plus récemment (mi-décembre 2025), l’autorité a rendu ses conclusions sur un autre sujet : les enjeux concurrentiels liés à l’impact énergétique et environnemental de l’IA. Son analyse suit 3 axes :

  • Difficultés d’accès au réseau électrique et incertitudes sur le prix de l’énergie
  • Montée en puissance des services d’IA frugaux
  • Standardisation, notamment des méthodes de détermination d’empreinte environnementale

Sur l’accès au réseau électrique

L’autorité constate que si l’inférence demeure sensible à la latence, la phase d’entraînement offre davantage de flexibilité en matière d’implantation géographique.
Elle aborde aussi la fin du dispositif d’accès régulé à l’électricité nucléaire historique (ARENH). Lui succède un système dual. D’un côté, la redistribution des bénéfices d’EDF aux consommateurs finaux via un versement nucléaire universel (VNU ; en cours d’examen parlementaire). De l’autre, le développement, par EDF, de contrats d’allocation de long terme adossés à la production nucléaire (CAPN).

Plusieurs opérateurs de datacenters ont passé des commandes sur le fondement des CAPN. L’Autorité de la concurrence surveille ces contrats, craignant qu’ils donnent lieu à des comportements verrouillant le marché des consommateurs grands industriels. Elle entend plus globalement veiller à l’absence de barrières à l’entrée ou à l’expansion pour les acteurs « de taille modeste ». Et reste attentive à la potentielle entrée des grands acteurs du numérique en tant qu’offreurs sur les marchés de l’énergie, surtout à l’étranger.

Sur l’IA frugale

L’autorité estime que la montée en puissance des services d’IA frugaux pourrait favoriser l’émergence de solutions compétitives sur le plan tarifaire. Et ainsi permettre aux fameux acteurs « de taille modeste » de rivaliser avec les grands du secteur. La concurrence pourrait aussi être affectée par le prisme de la qualité, au sens où l’IA s’adapterait à des déploiements moins importants utilisant éventuellement des infrastructures existantes.

Il existe un risque que des acteurs adoptent, de manière coordonnée ou non, et y compris involontairement, des comportements trompeurs qui ne reposeraient pas sur des méthodologies robustes en termes scientifiques. Ou bien qu’ils fassent en sorte de limiter l’innovation ou de ne pas communiquer sur l’empreinte environnementale alors qu’il existe une demande.

Sur la standardisation

La standardisation des méthodes de détermination d’empreinte environnementale est fondamentale pour garantir une concurrence sur la base des mérites, déclare l’autorité.

Elle mentionne deux documents – le référentiel général d’écoconception Arcep/Arcom et celui sur l’IA frugale porté par l’Afnor – et appelle à les voir comme la préfiguration d’une normalisation à l’échelle européenne voire internationale. Mais reste vigilante concernant, en particulier :

  • Adoption d’outils sans méthodologie sous-jacente robuste
  • Conditions privant des acteurs du bénéfice de la standardisation ou empêchant l’expression de la frugalité comme paramètre de concurrence
  • Comportements empêchant cette standardisation ou ralentissant son élaboration
  • Découragement des acteurs à aller plus loin que ce que propose la standardisation

Illustration générée par IA

The post GenAI : l’Autorité de la concurrence bascule en aval de la chaîne appeared first on Silicon.fr.

Reçu — 17 décembre 2025

Les applications d’intelligence artificielle peinent encore à séduire le grand public

16 décembre 2025 à 10:53

Trois années se sont écoulées depuis l’avènement du boom de l’IA générative. Pourtant, la monétisation des startups spécialisées dans ce domaine repose majoritairement sur la clientèle professionnelle plutôt que sur les particuliers. Si les modèles linguistiques polyvalents comme ChatGPT ont rapidement conquis un large public, les outils GenAI spécialisés destinés aux consommateurs individuels tardent à ... Lire plus

L'article Les applications d’intelligence artificielle peinent encore à séduire le grand public est apparu en premier sur Fredzone.
Reçu — 8 décembre 2025

{ Tribune Expert } – Sécuriser la GenAI commence par un inventaire clair et une visibilité réelle sur ses composants

8 décembre 2025 à 11:18

La plupart des organisations ont découvert la GenAI ces dernières années. Dès lors, elles ont avancé vite, très vite. Les usages ont rapidement fleuri et les projets se sont empilés, mais un constat a fini par s’imposer dans les discussions entre équipes techniques : impossible d’ignorer plus longtemps les risques spécifiques liés aux grands modèles de langage.

Car c’est peu de dire que la sécurité des LLM a, dans un premier temps, été reléguée au second plan. L’arrivée de l’OWASP LLM Top 10 change cet état de fait en apportant un cadre clair pour identifier les vulnérabilités critiques observées dans les applications et comprendre comment les atténuer.

L’OWASP, pour Open Web Application Security Project, est une organisation internationale dédiée à la sécurité des logiciels. Le référentiel LLM top 10, recense les 10 principaux risques de sécurité liés spécifiquement aux modèles de langage (LLM) et aux applications qui les utilisent. Il donne enfin un vocabulaire commun aux développeurs, aux architectes et aux équipes sécurité. Sa vocation est simple : rendre les charges de travail IA plus sûres, en offrant des repères que les entreprises n’avaient pas jusqu’ici.

L’initiative a d’ailleurs pris de l’ampleur et s’inscrit désormais dans le GenAI Security Project, un effort mondial qui dépasse la seule liste des dix risques initiaux et fédère plusieurs travaux autour de la sécurité de l’IA générative.

Ce mouvement répond à une réalité vécue sur le terrain. Beaucoup d’équipes peinent encore à s’aligner au moment de déployer des technologies GenAI : responsabilités dispersées, rythmes différents et une question récurrente sur la manière d’aborder ce sujet émergent. L’OWASP arrive justement pour apporter cette cohérence, avec des contrôles compréhensibles et applicables dans des environnements où tout s’accélère.

Sa singularité tient aussi à sa place dans l’écosystème. Là où des cadres de classification des menaces comme MITRE ATT&CK et MITRE ATLAS décrivent surtout les tactiques et techniques d’attaque, l’OWASP LLM top 10 se concentre sur les risques spécifiques aux modèles génératifs. Il offre ainsi une grille de lecture complémentaire et nécessaire pour mieux structurer les priorités.

GenAI, Kubernetes et l’élargissement de la surface d’attaque

Si l’OWASP LLM Top 10 arrive à point nommé, c’est aussi parce que les environnements techniques qui portent la GenAI ont profondément changé.

Les organisations ne se contentent plus d’utiliser des services grand public. Elles déploient désormais leurs propres modèles, souvent au sein de plateformes cloud native pensées pour absorber des volumes variables et des charges de calcul élevées.

L’écosystème s’est transformé à grande vitesse, avec l’adoption de solutions comme Llama 2, Midjourney, ElevenLabs, ChatGPT ou encore Sysdig Sage dans des environnements Kubernetes taillés pour la scalabilité et l’orchestration.

Cette transition a un effet immédiat car elle élargit la surface d’attaque. Un modèle d’IA déployé dans un cluster Kubernetes n’a rien à voir avec une application traditionnelle exécutée on-premises. Les risques ne sont plus seulement liés aux données ou au comportement du modèle, mais à toute la chaîne qui l’entoure. Un conteneur mal configuré, un composant obsolète ou un accès mal maîtrisé peuvent suffire à exposer l’ensemble de l’infrastructure.

La complexité de ces environnements accentue un phénomène déjà bien visible : l’absence de repères communs pour comprendre ce qui relève d’un risque LLM, d’une mauvaise configuration Kubernetes ou d’un problème de chaîne d’approvisionnement logicielle.

Dans un tel contexte, la seule intuition ne suffit plus. Les équipes doivent composer avec des technologies qui évoluent plus vite que les pratiques internes, tout en tenant compte d’un paysage réglementaire qui se densifie, notamment avec l’entrée en vigueur de l’AI Act en Europe en 2025.

C’est précisément cette convergence, qui englobe nouveaux usages, infrastructures distribuées et pression réglementaire, qui rend indispensable une approche structurée de la sécurité GenAI. Et c’est là que l’OWASP pose les premières briques d’une méthodologie enfin partagée.

Poser les fondations d’une sécurité opérationnelle et efficace !

Face à ces environnements qui se complexifient, l’adage à retenir est que l’on ne protège correctement que ce qu’on voit réellement. Or, la majorité des organisations manquent encore d’un inventaire fiable de leurs actifs IA, qu’il s’agisse de modèles internes ou de solutions tierces intégrées rapidement. L’OWASP rappelle d’ailleurs que cette visibilité constitue la première étape d’une sécurité GenAI solide.

C’est là que certaines approches prennent tout leur sens, comme l’identification automatique des endroits où les paquets IA s’exécutent, en reliant ces informations aux événements d’exécution (runtime), aux vulnérabilités et aux mauvaises configurations. L’objectif est simple : faire émerger les risques réels, là où ils apparaissent.

La visibilité passe aussi par la SBOM (Software Bill of Materials). En y intégrant les composants d’IA, les équipes disposent d’une liste complète de tous les éléments qui composent leurs charges de travail GenAI. Ce recensement permet ensuite de prioriser les charges de travail selon leur niveau de risque.

Enfin, pour structurer cette démarche, les organisations peuvent s’appuyer sur des rapports OWASP Top 10 préconfigurés et sur l’alignement avec MITRE ATLAS, qui éclaire la manière dont les modèles peuvent être ciblés selon des tactiques d’attaque documentées.

En réunissant ces briques (inventaire, SBOM et visibilité sur l’exécution au runtime) les équipes disposent non seulement d’informations, mais d’une lecture hiérarchisée et exploitable de leurs risques GenAI. C’est cette capacité à voir, comprendre et prioriser qui transforme enfin la sécurité de l’IA en pratique opérationnelle.

Philippe Darley est expert sécurité du Cloud chez Sysdig

The post { Tribune Expert } – Sécuriser la GenAI commence par un inventaire clair et une visibilité réelle sur ses composants appeared first on Silicon.fr.

❌