Vue normale

Reçu avant avant-hier

Espoir au milieu des fuites de playtest de Marathon : Est-il trop tard pour un revival ?

9 septembre 2025 à 16:00

Le tireur d’extraction de Bungie, Marathon, est actuellement en phase de test de jeu extensive, et de nouvelles fuite suggèrent des améliorations prometteuses. Le leaker de Twitter/X Deakstiny a récemment partagé des informations sur le dernier test de jeu, y compris des rapports selon lesquels Bungie indemnise les joueurs jusqu’à 500 $ pour une participation […]

Le post Espoir au milieu des fuites de playtest de Marathon : Est-il trop tard pour un revival ? est apparu en premier sur Moyens I/O.

Incident du 26 août 2025 ayant touché les serveurs de production et de développement

Il y a exactement deux mois, un incident était survenu suite à un redémarrage brutal du serveur hébergeant les conteneurs de production et de développement ayant entraîné une attribution inattendue d’adresses IP. Et des réponses techniques 502 Bad Gateway pour notre lectorat.

Ce 26 août, vers 15:22, un message peu engageant est arrivé par pneumatique sur nos téléscripteurs (via Signal pour être précis) : « Tiens c’est bizarre j’ai perdu accès au site. Et au serveur oups. » L’après-midi et la soirée furent longues.

Sommaire

Premier diagnostic

Le serveur répond au ping et permet les connexions TCP port 22, mais pas le SSH. Et les services web ne répondent plus. Souci matériel ? Noyau en vrac ? Attaque en cours ? Les spéculations vont bon train.

La connexion au serveur revient par intermittence, permettant à un moment d’exécuter quelques commandes, à d’autres d’attendre longuement pour l’affichage d’un caractère ou l’exécution de la commande tapée.

Le premier contact réétabli avec le serveur est assez clair (une forte charge) :

$ uptime
15:06:59 up 2 days,  2:54,  1 user,  load average: 50,00, 205,21, 260,83

(dernier redémarrage le week-end précédent, mais surtout une charge système moyenne respectivement de 50, 205 et 261 sur les 1, 5 et 15 dernières minutes)

Initialement on suppose qu’il s’agit d’un trop grand nombre de requêtes ou de certaines requêtes tentant des injections de code sur le site (bref le trafic de fond plutôt habituel et permanent), et on ajoute des règles de filtrage péniblement et lentement pour bloquer les IP qui ressortent le plus dans nos logs.

Le site est alors inaccessible pendant plusieurs périodes. On arrête et relance ensuite plusieurs fois les services en pensant avoir ajouté suffisamment de filtrage, mais rapidement le serveur se retrouve englué. Les services sont alors arrêtés plus longuement le temps d’analyser les logs au calme. Au calme inclut notamment ne pas juste disposer d’une connexion ssh depuis un smartphone, mais plutôt d’un clavier et d’un grand écran par exemple, de l’accès à tous les secrets et toute la documentation aussi.

Finalement le trafic n’est pas énorme (en volume total) et si les requêtes hostiles sont bien présentes, rien ne semble inhabituel. Par contre les processus de coloration syntaxique partent en vrille, consommant chacun un processeur et aspirant allègrement la mémoire disponible. Avant d’être éliminés par le noyau Linux.

La console est remplie d’élimination de processus de ce type :

Le plein d’OutOfMemory

Mais si rien n’a changé niveau logiciel sur le conteneur LXC de production et si les requêtes ne sont pas inhabituelles, qu’est-ce qui peut bien écrouler le serveur et créer ces processus gourmands ?

Eh bien des requêtes habituelles…

Pendant les phases d’attente lorsque le serveur ne répondait plus vraiment, nous avons noté qu'une nouvelle entrée de suivi a été créée (merci BAud et merci RSS/Atom pour nous avoir permis de la voir alors que le serveur ne répondait déjà plus). Elle indique que la coloration syntaxique ne marche plus sur le site. Notamment l’exemple donné dans la documentation.

Pourtant le rendu fonctionne en testant en ligne de commande avec pygmentize.

Mais oui en testant l’exemple donné via le site, il est créé un processus Python2 pygment qui commence à se gaver de ressources.

Et en regardant les différents contenus et commentaires créés sur le site autour de l’incident, en filtrant sur ceux contenant des blocs avec de la coloration syntaxique, la dépêche (alors en préparation) sur G'MIC 3.6 apparaît. Et en testant cette dépêche, il est bien créé quatre processus Python2 pygment qui se gavent de ressources et ne semblent jamais vouloir se terminer. À rapprocher par exemple d’une page qui a été servie en 6785.9978s.

4 processus gourmands

OK, le souci vient de requêtes tout à fait habituelles de coloration syntaxique, reste à comprendre pourquoi ces processus tournent mal.

La boucle sans fin

Un petit strace pour suivre les appels système en cours sur un des processus infernaux relève une boucle assez violente :

(...)
close(623199355)                        = -1 EBADF (Bad file descriptor)
close(623199356)                        = -1 EBADF (Bad file descriptor)
close(623199357)                        = -1 EBADF (Bad file descriptor)
(...)

Il semble y avoir une immense itération sur des descripteurs de fichiers, en vue de les fermer, mais à l’aveugle, sans savoir s’ils existent réellement.

En regardant le code du composant utilisé (pygments), il semble n'y avoir qu'un seul appel à close() :

# close fd's inherited from the ruby parent
        import resource
        maxfd = resource.getrlimit(resource.RLIMIT_NOFILE)[1]
        if maxfd == resource.RLIM_INFINITY:
            maxfd = 65536

        for fd in range(3, maxfd):
            try:
                os.close(fd)
            except:
                pass

Donc on itère sur tous les descripteurs entre 3 et le maximum déterminé…

>>> import resource
>>> print(resource.getrlimit(resource.RLIMIT_NOFILE)[1])
524288
>>> print(resource.RLIM_INFINITY)
-1

Un demi-million de fois ici donc. L’objectif initial de la boucle est de fermer les descripteurs de fichiers provenant du processus Ruby père, issue du fork via Open3.popen3. La version suivante du composant la remplace d’ailleurs par un ajout de l'option :close_others, qui précisément « modifie l’héritage [des descripteurs de fichiers du processus parent] en fermant les non-standards (numéros 3 et plus grands) ».

Sur une Debian 12, la limite du nombre de fichiers par défaut, c’est 1 048 576. C’est déjà probablement bien plus que la valeur qui prévalait à l’époque où a été écrit la boucle Python (on avait des limitations à 4096 à une époque reculée). Mais il s’avère que durant le week-end l’hôte du conteneur de production a été migré en Debian 13. Sans modification du conteneur de production pensions-nous. Sans modification directe du conteneur de production. Mais quid d’une modification indirecte ? Par exemple si la limite par défaut des « Max open files » était passée à 1 073 741 816 sur l’hôte, soit 1024 fois plus que quelques jours auparavant. Et donc des boucles nettement plus longues voire sans fin, sans libération de mémoire.

On ne peut mettre à jour le composant pygments dans l’immédiat, mais on peut limiter les dégâts en abaissant la limite du nombre de descripteurs de fichiers à quelque chose de raisonnable (i.e. on va gaspiller raisonnablement des cycles CPU dans une boucle un peu inutile mais brève…). Une édition de /etc/security/limits.conf, un redémarrage du conteneur de production et on peut vérifier que cela va nettement mieux avec cette réparation de fortune.

Une dernière page d’epub ?

Le conteneur LXC portant le service epub de production a assez mal pris la surcharge du serveur, et vers 20h08, systemd-networkd sifflera la fin de la récré avec un eth0: The interface entered the failed state frequently, refusing to reconfigure it automatically (quelque chose comme « ça n’arrête pas d’échouer, débrouillez-vous sans moi »). Le service epub est resté en carafe jusqu’au 27 août vers 13h31 (merci pour l’entrée de suivi).

Voir ce commentaire sur la dépêche de l’incident précédent expliquant la séparation du service epub et du conteneur principal de production (en bref : dette technique et migration en cours).

Retour en graphiques sur la journée

Le serveur était très occupé. Au point de n’avoir pas le temps de mettre à jour les graphiques de temps en temps.

Rétrospectivement les processeurs du serveur ont travaillé dur : 140 de charge sur le graphique (mais avec des pics jusque 260 d’après la commande uptime), contre moins de 5 en temps normal (un petit facteur de 28 à 52   ô_Ô)

Charge CPU

Et l’utilisation de la mémoire montre aussi de brutaux changements de comportement : libération intempestive de mémoire (Free, en vert), utilisation mémoire plus importante que d’habitude (Used, en jaune), là où le comportement normal est d’avoir le maximum en cache (Cached, en orange) et des processus tellement peu consommateurs en RAM que cela n’apparaît normalement pas.

Utilisation mémoire

Mesures préventives et correctives

Dans les actions en cours ou à prévoir :

  • mettre à jour la documentation pour disposer facilement et rapidement des informations pour les connexions aux cartes d’administration ou les procédures de blocages d’IP
  • procéder à la montée de version des composants (yapuka, épineux sujet de la dette technique à éponger)
  • vérifier l’efficacité des limitations CPU/mémoire mises sur certains conteneurs LXC et les étendre aux autres
  • mettre des limites sur des processus particuliers (comme ceux de pygments)
  • ajouter le déploiement des limites par utilisateur dans le code Ansible
  • corriger la collecte rrd des métriques concernant les interfaces réseau
  • remonter les alertes OOM qui ne sont pas normales
  • comprendre la surconsommation mémoire ? (les boucles actives expliquent la consommation processeur, mais pour la mémoire ?)

Bonus inattendu pour l’incident précédent du 26 juin 2025

De façon cocasse, ce nouvel incident et le temps passé à parcourir les différents logs ont permis de retrouver les infos de la carte d’administration distante et d’expliciter l’origine du redémarrage serveur intempestif. À quelque chose malheur est bon, si on peut dire. Ceci n’est pas une invitation pour un prochain incident.

Commentaires : voir le flux Atom ouvrir dans le navigateur

Note: Utiliser python dans un Virtual Env

19 août 2025 à 08:16

Créer / Utiliser python3 avec venv, afin de ne pas pourrir votre système par l'ajout de packages pip

# Création des répertoires et scripts
python3 -m venv ./project
# Activation pour votre shell
. ./project/bin/activate
# Désactivation pour votre shell
deactivate

Vous pouvez désormais utiliser pip, les packages seront localisés dans votre projet.

Utiliser requirements.txt pour faciliter l'instalation des packages

# Setup du fichier normalisé requirements.txt
pip freeze > requirements.txt
# Installation des packets
pip install -r requirements.txt

Note: Sous debian, il vous faudra le packet python3-venv

Il existe d'autres outils similaires pyenv et pyenv:

# Avec virtualenv:
python3 -m virtualenv ./venv
. ./venvbin/activate
deactivate
# Avec pyenv
# Il s'agit d'une gestion plus avancée vous permettant de basculer entre versions de python
# Voir https://github.com/pyenv/pyenv?tab=readme-ov-file

Permalink

ConFoo Montreal 2026: L'appel aux conférenciers est ouvert

La conférence ConFoo est de retour pour sa 24 e édition, du 25 au 27 février 2026 à l’Hôtel Bonaventure de Montréal! Que vous soyez un développeur junior ou un CTO, venez découvrir pourquoi ConFoo est devenu l’un des événements phares pour les professionnels en hautes technologies.

Nous sommes présentement à la recherche d’experts d’expérience souhaitant joindre notre équipe de conférenciers pour l’édition 2026! De PHP à JavaScript, en passant par tous les enjeux liés à la sécurité et au développement de l’IA, ConFoo couvre chaque année l’ensemble des sujets qui font bouger l’industrie.

Offertes en français ou en anglais, nos présentations sont généralement d’un format de 45 minutes, incluant un 10 minutes de questions des participants. Nos conférenciers invités profitent aussi d’un traitement privilégié; comprenant la couverture de leurs frais de déplacement et d’hébergement, en plus de l’accès à l’expérience complète de l’événement (présentations, repas, etc.).

Vous avez jusqu’au 21 septembre prochain pour soumettre votre projet de présentation!

Vous cherchez simplement à vous inscrire? Profitez dès maintenant d’un rabais de 300$ en réservant votre place d’ici le 17 octobre!

Faites partie de l’aventure avec nous et découvrez comment l’intelligence humaine est en train de façonner le milieu des hautes technologies!

Commentaires : voir le flux Atom ouvrir dans le navigateur

Cansat v2 : Raspberry-Pi Pico et MicroPython

Bonjour à tous,

Nombre d'entre-vous savent que nous sommes impliqué dans le projet CanSat (voir précédents articles sur le sujet CanSat). 

Nous poursuivons les travaux sur Kit CANSAT version 2, l'occasion de faire le point.
Pour rappel, notre kit utilise un Raspberry-Pi Pico et du code Python sur microcontrôleur (MicroPython).


Documentation Open-Source disponible sur le Wiki de MCHobby.

A propos de CanSat

CanSat est un concours visant a stimuler l'apprentissage des sciences dans le domaine de l'AéroSpatial en réalisant un mini-satellite (la CanSat) pas plus grande qu'une boîte de Soda. Ce satellite est envoyé et éjecté à 3000m d'altitude à l'aide d'une roquette. C'est à partir de ce moment que votre projet capture les données et les envois au sol.

Si vous voulez en apprendre plus sur le concours CanSat, je vous invite à visiter la page d'accueil CANSAT sur EseroBelgium.be .

Cansat V2 : le point

100% compatible avec la version précédente (câblage code), nous avons terminé le premier round de test du prototype Alpha. Les correctifs nécessaires sont apportés et aux cartes et le prototype Beta arrive prochainement.

Outre les aspects mécaniques déjà abordés au précédent article, nous allons pouvoir nous attarder sur les caractéristiques électroniques.

Je vous présente Cansat-Pico V2

Cansat Pico V2 (source: MCHobby Wiki)

 
Cansat Pico V2 (source: MCHobby Wiki)
Note: connecteur d'antenne manquant.

Et le visite ne serait pas complète sans inspecter le dessous de la carte.

Cansat Pico V2 (source: MCHobby Wiki)

Quelques détails croustillants

Comme annoncé, nous avons cherché à faciliter les connexions en utilisant des connectiques populaires (Qwiic/StemmaQt et Groove).

LA sérigraphie reprend également de nombreuses informations pour permettre

Cansat Pico V2 (source: MCHobby Wiki)
Note: le connecteur d'antenne est manquant sur la photo

Cansat Pico V2 (source: MCHobby Wiki)

Les autres cartes permettant de créer une CANSAT complete sont également prêtes...

Cansat Pico V2 (Lettuce, Onion et Bun)

Pour l'instant, nous consacrons les efforts sur:

Bonne lecture,
Dominique

Test du robot TPBot EDU Car Kit pour micro:bit par Elecfreaks

Envie de plonger dans la robotique sans prise de tête ? Découvrez le TPBot EDU Car Kit d’Elecfreaks pour micro:bit ! Un robot accessible, ludique et bourré de potentiel, parfait pour petits et grands bidouilleurs. Montage rapide, programmation simple avec MakeCode ou Python, défis variés (suiveur de ligne, évitement d’obstacles…)… Que vous soyez enseignant, parent ou maker […]

Cet article Test du robot TPBot EDU Car Kit pour micro:bit par Elecfreaks a été publié en premier sur Framboise 314, le Raspberry Pi à la sauce française.....

Cansat v2 : Raspberry-Pi Pico et MicroPython

Bonjour à tous,

Nombre d'entre-vous savent que nous sommes impliqué dans le projet CanSat (voir précédents articles sur le sujet CanSat). 

Nous faisons actuellement évoluer notre Kit CANSAT vers une version 2 .
Pour rappel, notre kit utilise un Raspberry-Pi Pico et du code Python sur microcontrôleur (MicroPython).


Documentation Open-Source disponible sur le Wiki de MCHobby.

A propos de CanSat

CanSat est un concours visant a stimuler l'apprentissage des sciences dans le domaine de l'AéroSpatial en réalisant un mini-satellite (la CanSat) pas plus grande qu'une boîte de Soda. Ce satellite est envoyé et éjecté à 3000m d'altitude à l'aide d'une roquette. C'est à partir de ce moment que votre projet capture les données et les envois au sol.

Si vous voulez en apprendre plus sur le concours CanSat, je vous invite à visiter la page d'accueil CANSAT sur EseroBelgium.be .

Les retours d'expériences

Des précédents tirs et expériences utilisateurs, voici ce qu'il serait utile d'améliorer sur le kit actuel:

  • Améliorer la robustesse globale (meilleure résistance aux chutes).
  • Réduire le diamètre des cartes (l'actuel 1mm pour réaliser une paroi semble trop contraignant pour de nombreux débutants).
  • Connecteur FPC (pour le ruban) reste "fragile".
    Les manipulations avec brusqueries peuvent facilement déboîter la fermeture.
  • Pour les débutants, il serait préférable d'insérer un Pico dans un connecteur plutôt que le souder directement sur la Cansat-Base. Il sera ainsi plus facile à remplacer.
  • Souder le module radio et le chargeur Lipo sont des opérations fastidieuses (surtout si c'est la première fois).

Cansat : améliorations mécaniques


1) Les 3 points d'ancrage externes

Ces trois points restent exactement aux mêmes endroits. Cela permet d'assurer une retro-compatibilité mécanique avec les kits déjà distribués.

Autour de ces trois points, le diamètre extérieur reste à 64mm.
Les trous font toujours 2.75mm (pour du Métrique 2.5).
 
2) Diamètre extérieur
 
Excepté pour les 3 points d'ancrage, le diamètre extérieur est passé à 60mm.
Cela laisse donc assez de place pour réaliser des parois de 3mm (contre 1mm précédemment) autour de la CanSat.

3) Axe central
 
Toutes les cartes, y compris la carte contrôleur, présentent en trou central de 6.4mm de diamètre.
Cela permet de placer un axe central (ou tige filetée M6) sur toute la hauteur de la CanSat.
Cette axe permet de décupler la résilience mécanique de la CanSat (meilleure résistance mécanique à l’atterrissage).
Cette axe permet aussi la réalisation d'une attache parachute ancrée jusqu'à la base de la CanSat (limite le risque de bris à l'ouverture du parachute).
 

Cansat : améliorations électroniques

 
Un travail de fond très important a été réalisé sur la carte de contrôle de la CanSat.
Sans aucun changement de raccordement (par rapport à la version 1), la carte contrôleur a été entièrement redessinée. 
 
Carte contrôleur (PICO-CANSAT-BASE v2)

1) module LIPO

Le module de charge Lipo est maintenant intégré à la carte.
Le connecteur J108 (en bas) permet de brancher l'accu.
Le Pico est directement alimenté par l'accu tandis qu'un circuit de régulation permet d'obtenir 3.3V @ 600mA.

Les points VBat/GND (sous le libellé "Pico Facing this side") permettent de brancher un second circuit de régulation si cela était nécessaire (ex: produire une tension de 5V pour une expérience).

Bien que l'électronique du module Lipo se trouve principalement sous la carte, les composants pratiques sont restés accessible sur le dessus de la carte.
Par exemple, la LED CHG (orange) est allumée pendant la charge de l'accu Lipo (qui se fait par l'intermédiaire du connecteur USB du Pico).
La résistance R_PROG permet d'ajuster le courant de recharge de l'accu (fixé à 250mA par défaut).

2) module radio

 
Le module radio est également intégré à la carte. Ce dernier est soudé sous la carte (à gauche du trou central. Emplacement repérable par les deux rangées verticales de 8 contacts).
 
Le connecteur d'antenne est accessible près du trou central (aussi bien par au-dessus que par en-dessous. Il est possible d'y souder un fil d'antenne ou un connecteur µFl .
 
Le module radio utilise l'interface SPI connectée par l'intermédiaire de cavalier sécables. Il est donc possible de sectionner les pistes pour désactiver le module radio et récupérer les GPIO.

3) carte MCU remplaçable

 
La carte microcontrôleur (MCU) s'insère perpendiculairement à la carte afin de respecter les contraintes CanSat tout en permettant la présence du trou central.
 
Le  microcontroleur s'insère sur le connecteur 2x20 broches visible jusque au dessus du connecteur Lipo (J108). Il est encadré par les libellés "USB" et "Pico Facing this side".
 
L'utilisation d'une connectique simple permettra le remplacement du MCU  en un tour de main. Grâce à ce dispositif, il sera possible - à l'avenir - d'envisager une mise-à-niveau matérielle du microcontrôleur.
 
Bien que le contact entre les deux cartes sera ferme, les connexions restent sensibles aux vibrations (ce qui ne manque pas dans une fusée).
L'usage de colle ou souder directement le MCU sur la carte de base reste toujours possible pour les plus exigeant d'entre nous.
 

4) Connecteurs Grove

 
Afin de faciliter les raccordements, 5 connecteurs Grove à la verticale (J101 à J105) permet de réaliser des connexions/déconnexions rapidement et facilement.
Ces connecteurs Grove proposent une alimentation 3.3V et les signaux sont tous en logique 3.3V.
 
Ces 5 connecteurs Grove offrent:
  • J102 : connecteur UART (port série) très pratique pour un GPS. 
  • J101 : connecteur Analogique pour 2 entrées analogiques (ou numériques). 
  • J104 et J105 : 2 connecteurs pour un total de 4 entrées/sorties numériques.
  • J103 : connectique I2C très pratique pour les capteurs en tout genre. 

Bien que je ne sois pas fan de la connectique Grove, je dois reconnaître:

  1. qu'ils sont plus facile a manipuler du fait qu'il sont plus encombrant.
  2. qu'il est facile de sectionner le câble, de scinder les 4 fils de cette connectique et d'y souder directement votre propre matériel.

5) Connecteur Qwiic/StemmaQt

 
Déjà présent à la première version de la carte, ce connecteur transporte le même bus I2C que le connecteur J103 (alimentation 3V3 et logique 3V3).
Ce connecteur est utilisé pour brancher le capteur BMP280 (température et pression atmosphérique).
 

6) breakout Pico

 
Tous les GPIOs ne sont pas exposés via les connecteurs Grove et Qwiic.
Besoin de plus de GPIO?
Pas de problème, toutes les broches du Pico sont disponibles en breakout sur les deux connecteurs situés de part et d'autres du connecteur Analogique (J101).
Il suffit de sortir votre fer à souder et réaliser vos connexions nécessaires.
 
Note: avez-vous remarqué l'identification des GPIOs sur la sérigraphie.

7) Gestion de l'alimentation 

Le haut de la carte reprend les points de connexion "PWR Enable".
Soudez y un interrupteur pour contrôler le circuit d'alimentation. Sans interrupteur, le circuit reste activé jusqu'à la décharge complète de l'accumulateur.

Une fois fermé, le circuit de régulation du Lipo est désactivé. Par effet de cascade, le régulateur 3.3V du Pico est aussi désactivé et le Pico s'éteint. 

La suite ...

Les premières cartes prototype sont commandées et le montage ne tardera plus.
A tout bientôt pour la suite...

TypeError/secure: Lightweight modern Python library to add security headers (CSP, HSTS, etc.) to Django, Flask, FastAPI, and more. Secure defaults or fully customizable.

14 juin 2025 à 17:17

Voici un module Python bien pratique pour injecter les entêtes HTTP de sécurité, avec des valeurs par défaut et strictes qui font bien le travail (cf HSTS, COEP, COOP, CSP, Cache-Control, Server, Permissions-Policy, Referrer-Policy, X-Content-Type-Options, X-Frame-Options, et custom).

Et il prend en charge quasiment tous les framework web actuels !


Permalink
❌