Vue normale

Google MedGemma 1.5 et MedASR - L'assistant ultime des toubibs

Par : Korben
14 janvier 2026 à 09:00

Il semblerait que l'intelligence artificielle ait fait suffisamment de progrès pour pourvoir assister à terme nos médecins débordés et en sous-nombre... C'est vrai que je vous parle souvent ici de comment les technos peuvent faire évoluer la médecine , mais là Google vient de passer un nouveau cap avec sa collection HAI-DEF (pour Health AI Developer Foundations, oui ils adorent les acronymes de barbares, je sais..).

Et là dedans, on trouve un gros morceau baptisé MedGemma 1.5 . Si la version précédente gérait déjà les radios 2D classiques, cette mise à jour s'attaque maintenant à la "haute dimension". En gros, le modèle peut maintenant analyser des volumes 3D issus de scanners (CT) ou d'IRM, et même des coupes d'histopathologie (l'étude des tissus biologiques).

Pas mal hein ?

L'idée n'est pas de remplacer le radiologue (pas encore... brrr), mais de lui servir d'assistant survitaminé pour repérer des anomalies ou localiser précisément des structures anatomiques. Ainsi, sur les tests de Google, MedGemma 1.5 améliore la précision de 14 % sur les IRM par rapport à la V1. C'est un sacré gain qui permet d'avoir des diagnostics plus justes et plus rapides.

Mais ce n'est pas tout puisque Google a aussi dégainé MedASR, un modèle de reconnaissance vocale (Speech-to-Text) spécialement entraîné pour la dictée médicale. Parce que bon, on sait tous que le vocabulaire d'un toubib, c'est un peu une langue étrangère pour une IA classique comme Whisper. Grâce à ça, MedASR affiche 58 % d'erreurs en moins sur les comptes-rendus de radios pulmonaires, soit de quoi faire gagner un temps précieux aux praticiens qui passent souvent des heures à saisir leurs notes.

D'ailleurs, si vous vous souvenez de mon article sur l'ordinateur plus efficace que les médecins , on y est presque ! Sauf que là, l'approche est plus collaborative. Les modèles sont d'ailleurs disponibles en "open" (enfin, avec les licences Google quoi) sur Hugging Face pour que les chercheurs et les boites de santé puissent bidouiller dessus.

Alors bien sûr, faut toujours rester prudent et Google précise bien que ce sont des outils de recherche et pas des dispositifs médicaux certifiés pour poser un diagnostic tout seuls. Je me souviens bien de Google Health et des questions sur la vie privée que ça soulevait à l'époque, mais techniquement, ça déchire.

Voilà, si ça vous intéresse, je vous laisse regarder leurs explications et vous faire votre propre avis sur la question... Maintenant, est-ce que vous seriez prêts à confier votre prochaine analyse à une IA (assistée par un humain, quand même) ?

Moi oui !

Moxie Marlinspike de Signal lance Confer, une IA vraiment privée

Par : Korben
13 janvier 2026 à 20:32

Vous vous souvenez de Moxie Marlinspike ?

Mais si, le créateur de Signal qui a, grosso modo, appris au monde entier ce qu'était le chiffrement de bout en bout accessible à tous.

Hé bien, le garçon est de retour et cette fois, il ne s'attaque pas à vos SMS, mais à vos conversations avec les Intelligences Artificielles.

Son nouveau projet s'appelle Confer et autant vous le dire tout de suite, c'est du lourd car son idée c'est de faire pour les chatbots IA ce que Signal a fait pour la messagerie instantanée. C'est-à-dire rendre le tout réellement privé, avec des garanties techniques tellement fortes que personne, ni lui, ni les hébergeurs, ni la police, ne puisse (en théorie) mettre le nez dans vos prompts.

Alors pour ceux d'entre vous qui se demandent "Quelle est la meilleure alternative privée à ChatGPT ?", vous tenez peut-être la réponse.

Car le problème avec les IA actuelles c'est que quand vous papotez avec ChatGPT, Gemini ou Claude, c'est un peu comme si vous confessiez tous vos secrets dans un mégaphone au milieu de la place publique. Ces modèles ont soif de données et Sam Altman d'OpenAI a lui-même souligné que les décisions de justice obligeant à conserver les logs (même supprimés) posaient un vrai problème, allant jusqu'à dire que même des sessions de psychothérapie pourraient ne pas rester privées.

Et c'est là que Confer change la donne.

Alors comment ça marche ? Hé bien Confer utilise une approche radicale puisque tout le backend (les serveurs, les modèles LLM) tourne dans ce qu'on appelle un TEE (Trusted Execution Environment). En gros, c'est une enclave sécurisée au niveau du processeur de la machine qui empêche même les administrateurs du serveur de voir ce qui s'y passe. Et pour prouver que c'est bien le bon code qui tourne, ils utilisent un système d'attestation distante .

Les données sont chiffrées avec des clés qui restent sur votre appareil et Confer utilise les Passkeys (WebAuthn) pour dériver un matériel de clé de 32 octets. Ainsi, la clé privée reste protégée sur votre machine (dans le stockage sécurisé type Secure Enclave ou TPM selon votre matos).

Du coup, quand vous envoyez un message à l'IA, le flux est conçu pour être :

  1. Chiffré depuis chez vous.
  2. Traité dans l'enclave sécurisée du serveur (TEE).
  3. Déchiffré uniquement dans la mémoire volatile de l'enclave.
  4. Rechiffré immédiatement pour la réponse.

C'est propre, c'est élégant, c'est du Moxie à 100% !

Bien sûr, Confer n'est pas le seul sur le créneau. J'ai vu passer des initiatives comme Venice (qui stocke tout en local) ou Lumo de Proton. Si vous utilisez déjà des outils comme OnionShare pour vos fichiers, cette approche "zéro trust" vous parlera forcément.

Mais la force de Confer, c'est l'expérience utilisateur car comme Signal à son époque, ça marche tout simplement. Suffit de 2 clics, une authentification biométrique, et boum, vous êtes connecté et vos historiques sont synchronisés entre vos appareils (de manière chiffrée, vérifiable via le log de transparence). En plus vous pouvez même importer votre contenu depuis ChatGPT.

L'outil est open source et le code auditable. De plus le support natif est dispo sur les dernières versions de macOS, iOS et Android. Je l'ai testé et ça répond vite et bien. Après je ne sais pas si c'est un LLM from scratch ou un modèle libre fine tuné. Et je n'ai pas fait assez de tests pour tenter de lui faire dire des choses qu'il n'a pas envie mais il a l'air pas pour le moment.

Pour l'utiliser sous Windows, il faudra passer par un authentificateur tiers pour le moment et pour Linux... une extension existe déjà pour faire le pont en attendant mieux. Par contre, c'est limité à 20 messages par jour et si vous en voulez plus, faudra passer au payant pour 35$ par mois. Mais on a rien sans rien. Après si vous vous inscrivez avec mon code KORBEN vous aurez 1 mois gratuit et moi aussi ^^

Bref, si vous cherchiez comment mettre un peu de vie privée dans vos délires avec l'IA, je vous invite grandement à jeter un œil à Confer. J'sais pas vous mais moi je trouve que ça fait du bien de voir des projets qui remettent un peu l'utilisateur aux commandes.

Source

{ Tribune Expert } – Observabilité en 2026 : quand l’IA redéfinit les règles du jeu

9 janvier 2026 à 12:07

L’observabilité a beaucoup évolué au cours de la dernière décennie, à l’époque où on l’appelait encore monitoring. Si auparavant, la technologie servait principalement à maintenir les services et les systèmes en état de marche, l’essor des expériences numériques en fait un outil essentiel pour la continuité d’activité, alimentant la prise de décision pour améliorer la satisfaction des clients, prévenir une défaillance ou même pour déterminer quels produits développer.

Aujourd’hui, l’IA déclenche un nouveau séisme et les pratiques d’observabilité doivent assumer des responsabilités plus lourdes encore : superviser les workloads complexes et dynamiques de l’IA pour en garantir la performance et la fiabilité. Cette évolution fait de l’observabilité non seulement un véritable fondement de l’expérience client, mais aussi un facteur clé d’innovation et de croissance dans les entreprises axées sur l’IA.

De la réaction à l’anticipation avec l’observabilité prédictive

 Pendant des années, l’observabilité s’est limitée à répondre aux questions : « Qu’est-ce qui s’est passé ? » et « Pourquoi ? ». En 2026, ce paradigme bascule radicalement. Les plateformes d’observabilité deviennent des systèmes d’intelligence pilotés par l’IA, capables non seulement d’expliquer les incidents, mais de les anticiper, de les corriger automatiquement et d’effectuer une auto-réparation pilotée par une IA générative et agentique.

Cette révolution s’appuie sur des LLM et des techniques de recherche augmentée (RAG) appliquées à la télémétrie privée des entreprises : les cahiers de procédures s’automatisent, la corrélation des données s’accélère et l’analyse des causes profondes devient instantanée. Plus besoin de naviguer dans des tableaux de bord complexes ; le langage naturel devient l’interface privilégiée pour interroger les données d’observabilité.

L’observabilité au service de la stratégie métier

Mais cette IA ne doit pas servir qu’à optimiser les performances techniques. Les organisations les plus matures établissent une corrélation directe entre les signaux techniques et l’impact métier réel. Les indicateurs évoluent : ils ne mesurent plus seulement la latence ou la disponibilité des serveurs, mais le revenu à risque, le coût par demande et l’impact sur l’expérience client.

Cette approche business-centric redéfinit les priorités IT. Chaque décision d’infrastructure, chaque investissement en observabilité, doit être justifié par son impact sur les SLO (objectifs de niveau de service), le MTTR (Mean Time To Resolution) et, à terme, sur la satisfaction et la fidélité des clients. 2026 marque la fin de l’IT en silo, déconnectée des enjeux métiers.

Maîtriser les coûts : l’enjeu oublié de l’observabilité

 Les factures d’observabilité explosent. C’est malheureusement une réalité pour de nombreuses entreprises. Elles font face à des surcoûts imprévus liés à l’ingestion de données, à la cardinalité élevée et aux fonctionnalités premium. En conséquence, beaucoup consolident leurs chaînes d’outils fragmentées et renforcent le contrôle des coûts liés à l’ingestion, au stockage et à la conservation des données. Pour cela, les organisations se tournent vers les plateformes unifiées, la consolidation étant perçue comme un gain à la fois en termes de coûts et de productivité.

Mais attention : la consolidation ne suffit pas. En 2026, les utilisateurs finaux devront aller au-delà des économies globales et examiner attentivement le modèle de facturation automatique de chaque fournisseur. Les prix liés à ces surcoûts peuvent encore générer des factures d’un montant inattendu si la croissance des données n’est pas étroitement contrôlée.

De même, les acheteurs doivent évaluer la puissance des capacités de gestion du pipeline de données de chaque plateforme (filtrage, routage, fédération et stockage hiérarchisé, par exemple) afin de pouvoir déterminer activement quelles données sont collectées, où elles sont stockées et combien de temps elles seront conservées. Ce n’est qu’en combinant la consolidation avec une facturation transparente et des contrôles rigoureux du pipeline que les organisations peuvent maintenir les dépenses d’observabilité à un niveau prévisible et alignées sur la valeur qu’elles tirent des données. 

OpenTelemetry : la norme qui libère

L’émergence d’OpenTelemetry (OTel) comme standard par défaut marque un tournant majeur. Finie l’époque des agents propriétaires verrouillant les organisations dans des écosystèmes fermés : OTel offre une architecture ouverte et interopérable pour l’ingestion de métriques, de logs et de traces.

Ce qui différenciera les organisations en 2026, ce ne sera plus l’ingestion des données, mais ce qu’elles en font après : analyses à haute cardinalité, espaces de travail guidés par l’IA, workflows intelligents. L’ouverture du standard crée un terrain de jeu égal, où l’innovation se concentre sur la valeur, pas sur le verrouillage technologique.

L’observabilité au cœur de l’IA et du cloud complexe

 L’explosion des workloads d’IA et des architectures cloud hyperscale impose une nouvelle norme : l’observabilité des LLM et des agents IA. En 2026, superviser la latence, le coût et le comportement des modèles de langage deviendra aussi critique que de monitorer une base de données. La gouvernance des agents IA, la visibilité des pipelines IA, le suivi des ressources GPU… autant de domaines où l’observabilité devient indispensable.

Parallèlement, les environnements hybrides et à l’edge demeurent ancrés dans le cloud natif et Kubernetes, mais l’observabilité y joue un rôle nouveau : elle devient le catalyseur d’expériences numériques résilientes basées sur l’IA et les API.

En 2026, l’observabilité ne sera pas une simple évolution technologique. C’est une refonte complète du modèle : de la réaction à l’anticipation, de l’infrastructure aux résultats métiers, de la complexité à la transparence, et de l’isolement à l’intégration écosystémique. Les organisations qui maîtriseront ces quatre piliers (observabilité prédictive, alignement métier, maîtrise des coûts et standardisation ouverte) seront celles qui tireront le maximum de valeur de leurs données et de leurs systèmes. Les autres risquent de rester bloquées dans une observabilité fragmentée, coûteuse et inefficace.

*Stéphane Estevez est EMEA Observability Market Advisor chez Splunk

The post { Tribune Expert } – Observabilité en 2026 : quand l’IA redéfinit les règles du jeu appeared first on Silicon.fr.

Poésie contre l’IA : les garde-fous débordés

10 décembre 2025 à 16:17
Des poèmes malveillants contournent les garde-fous de 25 modèles d’IA, révélant une vulnérabilité systémique des mécanismes d’alignement actuels.
❌