Début d’années riche en acquisitions pour Cloudflare. Après l’achat de Human Native, c’est l’équipe d’Astro Technology qui rejoint ses effectifs.
L’opération, dont les termes financiers n’ont pas été divulgués, marque une nouvelle étape dans la guerre d’influence que se livrent les géants du cloud pour contrôler l’écosystème du développement web.
Astro s’est imposé comme un framework JavaScript incontournable utilisé par des marques majeures comme Unilever, Visa et NBC News, ainsi que par des centaines de milliers de développeurs à travers le monde. Sa particularité ? Chaque page web ne charge que le code strictement nécessaire à son affichage dans le navigateur, une approche qui optimise drastiquement les performances.
Dans un environnement où les moteurs de recherche privilégient les sites au chargement rapide et où les consommateurs exigent une instantanéité quasi totale, cette technologie répond à un besoin critique du marché. Les sites reposant massivement sur JavaScript pour le rendu initial peinent à offrir cette vitesse, au détriment de leur référencement et de leurs taux de conversion.
L’open source comme arme stratégique
Matthew Prince, cofondateur et PDG de Cloudflare, ne s’y trompe pas en affirmant sa philosophie : « Protéger et investir dans les outils open source est essentiel à la santé d’un Internet libre et ouvert ». Contrairement aux craintes qui entourent habituellement les rachats par les grands groupes, Astro conservera sa licence MIT et restera entièrement open source.
Cette décision n’est pas anodine. Elle s’inscrit dans une stratégie éprouvée par Cloudflare, qui a déjà démontré son soutien à des projets comme TanStack et Hono sans chercher à verrouiller ces technologies. L’entreprise s’engage même à poursuivre le financement du Astro Ecosystem Fund, aux côtés de partenaires industriels comme Webflow, Netlify, Wix et Sentry.
Une intégration déjà bien avancée
Astro constitue déjà l’architecture de plateformes comme Webflow et Wix qui fonctionnent sur Cloudflare. Cette acquisition officialise donc une collaboration de longue date. Cloudflare n’a d’ailleurs jamais caché son rôle de sponsor et défenseur du projet depuis ses débuts.
Le timing de l’opération est particulièrement stratégique. Astro 6, dont la version bêta vient d’être lancée, introduit un serveur de développement repensé alimenté par l’API Vite Environments.
Cette nouvelle mouture permet aux développeurs utilisant le plugin Vite de Cloudflare de faire tourner leur environnement local avec workerd, le runtime open source de Cloudflare Workers. Une intégration technique qui facilite considérablement l’accès aux services comme Durable Objects et D1 dès la phase de développement.
Un double pari sur l’avenir
Avec Human Native, l’acquisition d’Astro dessine les contours d’une stratégie ambitieuse : contrôler l’ensemble du cycle de vie du contenu web, de sa création à sa monétisation dans l’écosystème de l’IA générative.
Cloudflare défie frontalement Vercel et Netlify, deux acteurs qui ont massivement investi dans leurs propres écosystèmes de développeurs. La bataille ne se joue plus uniquement sur les performances d’infrastructure, mais sur la capacité à offrir une expérience développeur complète et intégrée.
Reste une question cruciale : Cloudflare saura-t-il maintenir l’agilité et l’esprit innovant qui ont fait le succès d’Astro tout en l’intégrant dans son infrastructure mondiale ? Les prochains mois nous le diront.
Dans une interview accordée à CNBC, Demis Hassabis, cofondateur et PDG de Google DeepMind, fraîchement auréolé du prix Nobel de Chimie, bouscule quelques certitudes partagées aux États-Unis sur la rivalité avec la Chine dans le domaine de l’IA.
«Je pense que l’opinion générale aux États-Unis a été un peu complaisante », déclare-t-il. L’avance occidentale ne se compterait plus en années, mais seulement en quelques mois, peut-être six à neuf mois sur certains aspects techniques.
Le patron de DeepMind cite notamment les performances récentes d’entreprises comme Alibaba, Moonshot AI ou DeepSeek pour étayer son constat. Selon lui, la Chine dispose d’une capacité d’ingénierie de classe mondiale, avec une efficacité remarquable pour optimiser les architectures existantes. Les restrictions américaines sur l’exportation des puces Nvidia, loin de paralyser les acteurs chinois, les auraient même poussés à être plus créatifs avec des ressources limitées.
L’innovation de rupture, ligne de démarcation
Cependant, il établit une distinction cruciale entre rattraper et innover. « Inventer quelque chose de nouveau est environ 100 fois plus difficile que de l’imiter ou de l’optimiser.»
Selon Demis Hassabis, la Chine excelle pour prendre une idée qui fonctionne et la rendre plus efficace. Mais il souligne qu’aucune « rupture de frontière » à AlphaFold n’est encore venue de Chine. L’innovation de « 0 à 1 » (inventer) nécessiterait une culture de recherche très spécifique, qui tolère l’échec et encourage l’exploration interdisciplinaire, estime-t-il.
Cette analyse prend une dimension stratégique lorsque Hassabis évoque les enjeux de sécurité. « Celui qui définit la frontière technologique définit aussi les normes de sécurité et d’éthique », affirme-t-il, ajoutant que ralentir par peur tandis que d’autres pays aux valeurs différentes accélèrent ferait perdre la capacité à sécuriser l’avenir de cette technologie. Une référence aux lois européennes, AI Act en tête, contre lesquelles Google, à l’instar des autres géants de la Tech, est opposé ?
Google rattrapé par OpenAI sur le terrain commercial
Le PDG de DeepMind aborder frontalement la question qui fâche : comment Google, inventeur de la majorité des technologies d’IA modernes, s’est-il fait dépasser commercialement par OpenAI et ChatGPT ?
« Google a inventé 80 à 90 % des technologies qui font tourner l’IA moderne », affirme-t-il. Mais il reconnaît que le géant de Mountain View a été « un peu lent à commercialiser et à passer à l’échelle », tandis qu’OpenAI et d’autres ont été « très agiles pour prendre ces briques de recherche et les transformer en produits de consommation immédiat ».
Et d’expliquer que son rôle, en fusionnant DeepMind et Google Brain, était précisément de résoudre cette équation : garder l’âme de « Bell Labs moderne » tout en étant capable de livrer des produits comme Gemini à une vitesse de start-up.
Entre recherche fondamentale et pression commerciale
Demis Hassabis se montre particulièrement lucide sur les tensions inhérentes à la gestion d’un laboratoire de recherche au sein d’une entreprise cotée. « Si vous ne faites que du produit, vous finissez par stagner car vous n’inventez plus les prochaines ruptures. Si vous ne faites que de la recherche, vous restez dans une tour d’ivoire », résume-t-il.
Il estime que le véritable retour sur investissement de l’IA ne se mesurera pas dans les chatbots mais dans sa capacité à révolutionner la découverte scientifique. Quand l’IA permet de découvrir de nouveaux matériaux ou des médicaments contre des maladies incurables, elle devient une infrastructure de civilisation, pas juste un gadget, affirme-t-il.
Cette vision à long terme le conduit à relativiser les craintes d’une bulle spéculative. « Il y a certainement beaucoup de bruit et de « hype » en ce moment. Mais je compare cela à l’ère du Dot-com. À l’époque, il y avait une bulle, mais Internet était bel et bien une révolution fondamentale. L’IA va transformer l’économie de manière encore plus profonde. Le véritable retour sur investissement ne se verra pas seulement dans les chatbots, mais dans la découverte de nouveaux matériaux, de nouveaux médicaments et dans la résolution de problèmes énergétiques.» affrime-t-il.
Comme à l’époque du Dot-com, il y a du bruit et de l’excès, mais l’IA représente bel et bien une révolution fondamentale qui transformera l’économie de manière encore plus profonde qu’Internet, estime le patron de DeepMind.
L’AGI toujours à l’horizon de 5 à 10 ans
Sur la question brûlante de l’Intelligence Artificielle Générale (AGI), Hassabis maintient sa prédiction. « Nous sommes à 5 ou 10 ans d’un système que l’on pourrait raisonnablement qualifier d’AGI », déclare-t-il à CNBC.
Le scientifique reconnaît que le « scaling » (l’augmentation de la puissance de calcul et des données) continue de produire des résultats, mais juge que cela ne suffira pas. Il manquerait encore des percées sur le raisonnement complexe et la planification à long terme pour atteindre une véritable AGI.
Avec ses propos nuancés sur la Chine et sa franchise sur les défis face à OpenAI, Demis Hassabis dessine les contours d’une course technologique mondiale plus serrée et imprévisible que prévu. Une course où l’innovation de rupture pourrait s’avérer plus décisive que la simple puissance de calcul.
Cloudflare rachète Human Native, une place de marché de données pour l’IA, pour structurer un nouveau modèle économique entre créateurs de contenus et développeurs de modèles génératifs.
Avec cette opération, dont le montant n’est pas communiqué, Cloudflare entend se positionner au cœur des flux de données qui alimentent l’IA tout en répondant aux tensions croissantes autour de la rémunération et du contrôle des contenus en ligne.
Cloudflare présente Human Native comme une marketplace destinée à connecter créateurs, éditeurs et développeurs d’IA autour de données « prêtes à l’emploi » pour l’entraînement et l’inférence. L’objectif affiché est de rendre plus simple et plus rapide la découverte, l’achat et l’accès à des contenus fiables, tout en offrant aux ayants droit des mécanismes transparents de prix et de rémunération.
Fondée en 2024, Human Native revendique une mission centrée sur une relation plus équitable et transparente entre créateurs de contenu et entreprises d’IA. La start-up s’appuie sur une équipe issue d’acteurs comme DeepMind, Google, Figma ou Bloomberg, avec une forte culture croisée tech–médias.
De la « Napster era » de l’IA à un modèle régulé
Pour James Smith, cofondateur et CEO de Human Native, l’ambition est de « sortir l’IA générative de son ère Napster », en garantissant contrôle, compensation et crédit aux créateurs lorsque leurs œuvres servent à entraîner des systèmes d’IA. Ce discours s’inscrit dans un climat de conflit croissant entre éditeurs, plateformes et fournisseurs de modèles, accusés de s’appuyer sur du scraping massif sans cadre contractuel clair.
L’acquisition de Human Native apparaît comme l’étape suivante : passer de la simple gestion d’accès au contenu à une monétisation structurée à l’échelle Internet.
La stratégie de Cloudflare dans l’IA
Historiquement positionné sur la performance web, la sécurité et le « connectivity cloud », Cloudflare se rapproche de plus en plus des couches applicatives liées à l’IA. En s’emparant d’une marketplace de données, l’entreprise se place en intermédiaire critique entre les détenteurs de contenu et les équipes IA, un rôle potentiellement aussi stratégique que celui de fournisseur d’infrastructure.
Pour les créateurs et les éditeurs, l’intérêt de Human Native réside dans la promesse de conserver le contrôle sur les usages tout en ouvrant un canal de revenus dédié à l’IA. La marketplace doit leur permettre de décider si leurs contenus sont accessibles, dans quelles conditions, et à quel prix, en remplaçant une logique de scraping par une logique de licence.
Pour les développeurs d’IA, l’enjeu est l’accès à des corpus fiables, traçables et juridiquement sécurisés, dans un contexte où le risque de litiges sur les données d’entraînement augmente. En centralisant découverte, négociation et flux de paiement, Cloudflare espère réduire la friction d’accès aux données tout en répondant aux attentes des régulateurs et des ayants droit.
Intégration aux outils de contrôle d’accès
Cloudflare prévoit d’intégrer progressivement les technologies et produits de Human Native à ses offres existantes. Cette fusion s’appuie sur des solutions comme AI Crawl Control, Pay Per Crawl et l’AI Index, afin de transformer des contenus non structurés en données prêtes pour l’entraînement et l’inférence des modèles IA.
Human Native complétera les mécanismes de Cloudflare permettant aux éditeurs de décider qui accède à leurs contenus via des bots IA. Les technologies de la startup transformeront les données multimédias en formats indexables et licenciables, intégrés à Pay Per Crawl pour des paiements automatisés lors de l’accès.
Cloudflare accélérera son AI Index, un système Pub/Sub où les sites publient des mises à jour structurées en temps réel, évitant les crawls coûteux et risqués. Human Native fournira les outils pour structurer et valoriser ces flux, rendant les données traçables et monétisables pour les développeurs IA.
L’acquisition soutiendra le protocole x402 et la x402 Foundation (avec Coinbase), pour des transactions machine-to-machine fluides. Les créateurs fixeront prix et conditions d’usage, intégrés aux services Cloudflare comme Workers et AI Gateway, créant un marché unifié de données IA.
L’ère de la gratuité totale semble révolue pour les leaders de l’IA. Après les accords passés avec certains groupes de médias (d’autres ont engagé des procédures judiciaires), c’est au tour de la plus grande encyclopédie collaborative de monétiser ses millions d’articles.
A l’occasion de ses 25 ans, Wikipedia vient en effet de signer, via sa maison mère la Wikimedia Foundation, des accords commerciaux avec Microsoft, Meta et Amazon, rejoignant ainsi Google, déjà signataire d’un accord depuis 2022.
Des acteurs de l’IA comme Perplexity et le français Mistral AI ont également été enrôlés dans ce dispositif qui redéfinit les règles du jeu entre communs numériques et industrie de l’intelligence artificielle.
Le montant des accords n’est pas communiqué.
Une manne de données devenue indispensable
Les chiffres parlent d’eux-mêmes : 65 millions d’articles répartis dans plus de 300 langues. Wikipedia s’est imposée comme la colonne vertébrale de l’entraînement des modèles d’IA générative. Chaque chatbot, chaque assistant virtuel développé par les mastodontes technologiques puise abondamment dans ce gigantesque corpus de connaissances structurées et vérifiées.
Mais cette exploitation massive a un coût. Le scraping intensif des contenus par les systèmes d’IA a fait exploser la demande sur les serveurs de la fondation, provoquant une hausse vertigineuse des dépenses d’infrastructure. « Wikipedia est un composant critique du travail de ces entreprises technologiques, elles doivent trouver comment le soutenir financièrement », martèle Lane Becker, président de Wikimedia Enterprise, la branche commerciale de la fondation.
Un modèle économique en pleine mutation
Face à cette situation, Wikimedia a créé une offre sur mesure : Wikimedia Enterprise. Cette plateforme commerciale propose un accès structuré et haut débit aux données de l’encyclopédie via des API payantes, avec des garanties de disponibilité pouvant atteindre 99% et des mises à jour en temps quasi réel.
Wikipedia reste gratuite pour le grand public et les usages non commerciaux, mais les exploitations industrielles doivent contribuer. Un principe que Tim Frank, vice-président de Microsoft, semble avoir intégré : « Nous aidons à créer un écosystème de contenu durable pour l’internet de l’IA, où les contributeurs sont valorisés.»
Les revenus générés restent pour l’instant modestes. En 2023, le contrat avec Google avait rapporté environ 3,2 millions $ de revenus annuels récurrents, soit 1,7% des 185,3 millions de revenus totaux de la fondation. Mais la multiplication des partenaires laisse augurer une montée en puissance significative.
Cette stratégie pourrait bien inspirer d’autres plateformes de connaissances ouvertes confrontées aux mêmes défis. La fondation franchit par ailleurs un nouveau cap avec la nomination de Bernadette Meehan, ancienne ambassadrice des États-Unis au Chili, au poste de directrice générale à compter du 20 janvier. Un profil diplomatique pour naviguer dans ces eaux nouvelles.
En se connectant aux agents IA embarqués, les solutions de gouvernance des données se rapprochent des applications métier.
Gartner signale cette tendance dans le cadre de son Magic Quadrant. Les acquisitions d’Informatica par Salesforce et de data.world par ServiceNow y font écho, estime-t-il.
Le cabinet américain relève d’autres marqueurs d’évolution du marché de la data governance. La gestion des données non structurées en fait partie. Avec l’IA en ligne de mire, les fonctionnalités se sont développées jusqu’à la vectorisation.
Convergences et chevauchements
Il y a un an, Gartner avait déclaré que la notion de plate-forme restait émergente sur ce marché. Historiquement axés sur l’exécution des politiques de gouvernance plus que sur leur mise en œuvre (data stewardship), les outils manquaient encore de liant, observait-il.
Son propos est moins affirmatif cette année. Mais au fond, le constat demeure : en pratique, plusieurs solutions autonomes sont souvent utilisées en parallèle (sécurité, qualité, confidentialité de la donnée, etc.). Elles occasionnent parfois des chevauchements fonctionnels.
Ces chevauchements sont accentués par l’évolution d’applications telles que les ERP et les CRM/CDP, qui en viennent à inclure des fonctionnalités de gouvernance des données. Ils le sont aussi par l’évolution du data management. Lequel, en connectant les silos de données par des approches comme le data mesh et la data fabric, devient plus à même d’automatiser cette gouvernance à l’appui de machine learning et de modèles sémantiques.
L’IA agentique, un discours plus qu’un état de fait
La hype autour de l’IA a ajouté à la confusion, menant nombre de fournisseurs de solutions classées dans la catégorie data management à prétendre pouvoir « automatiser la gouvernance ». C’est exagéré, avertit Gartner : au mieux, cette automatisation touche des tâches spécifiques comme la découverte d’entités ou la remédiation.
Même avertissement quant au discours sur la gouvernance à renfort d’agents IA : on le prendra comme une promesse – celle d’automatiser les workflows alimentés par les métadonnées actives* – plutôt qu’un état de fait.
La gouvernance de l’IA s’est développée plus nettement, avec l’arrivée de capacités natives (workflows d’approbation automatisés, gestion du cycle de vie des modèles, évaluation continue du risque et des biais, reporting réglementaire…). En toile de fond, la concurrence d’autres types de solutions (cybersécurité, GRC…).
* La plupart des fournisseurs classés dans le Magic Quadrant de la data governance le sont aussi dans celui de la gestion des métadonnées. Les solutions relevant de ce marché visent toutefois plus large. Il y a celles « orientées data » et celles « orientées gouvernance ». Les premières s’adressent généralement à un public plus technique que les secondes, nécessitent moins d’extensibilité et ciblent la gestion des politiques plutôt que leur exécution.
En matière de gouvernance des données, qu’est-ce qu’un déploiement « à grande échelle » ? Dans le cadre du Magic Quadrant dédié à ce marché, Gartner a défini trois planchers : 500 utilisateurs, 50 sources et 1000 assets.
Pour être classés, les fournisseurs devaient être en mesure de revendiquer au moins 10 de ces déploiements. Il fallait aussi, entre autres, figurer dans le top 25 sur un indice maison : le CII (Customer Impact Index). Il est calculé à partir d’éléments tels que le volume de recherches sur le site web de Gartner, le nombre de mentions dans ses Peer Insights, les tendances sur Google Search et le nombre d’abonnés sur X/LinkedIn.
AWS et Google, cités mais non classés
Le « critère CII » a coûté leur place à plusieurs offreurs néanmoins crédités d’une « mention honorable ». Parmi eux, Anjana Data et Global Data Excellence, tous deux classés dans l’édition précédente de ce Magic Quadrant.
Au rang des « mentions honorables », il y a aussi AWS et Google. Chez le premier, on obtient une solution de gouvernance data & analytics en associant les briques SageMaker, SageMaker Catalog et AWS Glue. Mais elle ne répond pas à l’un des critères fonctionnels exigés : l’extensibilité native entre environnements cloud. Avec Dataplex Universal Catalog, Google en propose bien une, mais elle dépend de fournisseurs tiers comme Collibra et Informatica.
15 fournisseurs, 5 « leaders »
D’une année sur l’autre, les catalogues de données ont évolué vers des « catalogues d’insights » permettant de rechercher des produits data. Ils se sont aussi rapprochés des applications métier sous le prisme de l’IA agentique (en se connectant aux agents embarqués). Dans ce contexte sont intervenues deux acquisitions notables : Informatica par Salesforce et data.world par ServiceNow.
De 3 « leaders » l’an dernier, on est passé à 5 : Alation et Atlan ont rejoint Collibra, IBM et Informatica.
Sur l’axe « exécution », qui traduit la capacité à répondre effectivement à la demande du marché, la situation est la suivante :
Rang
Fournisseur
Évolution annuelle
1
IBM
+ 1
2
Collibra
+ 1
3
Microsoft
nouvel entrant
4
Atlan
+ 1
5
Informatica
– 4
6
Alation
=
7
BigID
nouvel entrant
8
Alex Solutions
– 1
9
Ab Initio
+ 4
10
Ataccama
– 2
11
ServiceNow (data.world)
=
12
Precisely
– 8
13
DataGalaxy
– 4
14
OvalEdge
– 2
15
Solidatus
– 1
Sur l’axe « vision », qui reflète les stratégies (commerciale, marketing, sectorielle, géographique…) :
Rang
Fournisseur
Évolution annuelle
1
Collibra
+ 2
2
Informatica
– 1
3
IBM
– 1
4
Atlan
=
5
Alation
=
6
ServiceNow
=
7
Alex Solutions
=
8
Precisely
+ 4
9
Microsoft
nouvel entrant
10
BigID
nouvel entrant
11
Ab Initio
+ 2
12
Ataccama
– 4
13
OvalEdge
– 2
14
DataGalaxy
– 4
15
Solidatus
– 1
Alation, pas encore mature sur la déclaration de politiques pour les produits data
Alation se distingue par le niveau d’ouverture de sa plate-forme, qui favorise la portabilité et met l’accent sur la flexibilité d’hébergement des données. Bon point également pour l’usage de l’IA, notamment pour la gestion de politiques, les contrôles de qualité des données et le dépannage. Gartner apprécie aussi l’écosystème de partenaires, qui favorise l’interopérabilité dans les environnements data & analytics.
On prendra garde aux efforts de gestion du changement et de montée en compétence que suppose l’adoption de fonctionnalités avancées tel le constructeur de produits data. Vigilance également sur les capacités natives de déclaration de politiques au niveau de ces mêmes produits data : elles ne sont sont pas aussi matures que chez la concurrence. Attention aussi au fait que certains modules (data quality, par exemple) ne sont livrés par défaut qu’avec la version cloud.
Chez Atlan, un point d’interrogation sur les déploiements à grande échelle
Gartner apprécie l’architecture de la solution, fondée sur un cœur Apache Iceberg qui favorise l’exploitation des métadonnées. Il salue également les outils fournis pour développer des connecteurs et des agents de gouvernance. Ainsi que, plus globalement, la dynamique commerciale d’Atlan (croissance de la base client et des revenus supérieure à celle des concurrents).
En natif, Atlan ne propose pas de profilage avancé des données ni de workflows de data quality (il s’appuie sur des partenaires comme Anomalo et Ataccama). Autre élément : les options de déploiement sur site et en cloud privé sont limitées. Par ailleurs, près des trois quarts des clients ne sont pas des grandes entreprises ; des clients déplorent d’ailleurs des performances réduites sur les déploiements à grande échelle.
Des écarts entre SaaS et on-prem chez Collibra…
Gartner apprécie le positionnement de Collibra en « plan de contrôle unifié » avec modèles natifs de data quality et d’observabilité. Il salue aussi l’écosystème de partenaires (AWS, Google, Infosys, Snowflake…) et le niveau de gouvernance de l’IA (la plate-forme fonctionne comme un registre documentant les modèles et mettant automatiquement en œuvre les politiques).
La parité fonctionnelle n’est pas systématique entre les modes de déploiement (la version SaaS sur AWS et GCP est la mieux dotée). Quant au modèle data quality/observabilité, il lui manque des fonctionnalités comme la supervision des données en flux et la déduplication. Attention aussi aux efforts nécessaires pour arriver à « maturité opérationnelle » avec la solution.
… comme chez IBM
Comme Alation, IBM a pour lui le niveau d’ouverture de sa solution, jugée adaptée aux environnements hybrides. Il se distingue aussi sur le niveau d’unification et de cohérence de la gouvernance entre data et IA. Ainsi que sur l’exécution de cas d’usages pertinents dans des domaines comme l’aide agentique à la gestion des tâches et la curation de données non structurées.
Comme chez Collibra, les produits SaaS et on-prem ne sont pas à parité fonctionnelle. Il y a aussi des écarts entre packages (par exemple, IBM Knowledge Catalog Standard ne donne pas accès à la gestion des règles, au contraire de watsonx.data intelligence). La migration depuis InfoSphere reste un défi, d’autant plus que le support à la gestion du changement manque. Attention aussi aux compétences nécessaires pour déployer la solution, la personnaliser et la passer à l’échelle.
Informatica, une feuille de route à surveiller sous l’ère Salesforce
Informatica est salué pour l’étendue de son catalogue d’intégrations et de ses partenariats avec les CSP. Il l’est aussi sur le volet automatisation, pour l’assistant CLAIRE Copilot et le moteur CLAIRE GPT (accès aux données en langage naturel). Gartner souligne également sa santé financière, son niveau d’investissement R&D et sa tarification flexible.
Si le modèle PaaS fluidifie le déploiement, un support additionnel peut se révéler nécessaire pour en tirer la valeur en fonction de la maturité du client. Attention aussi, d’une part, aux problèmes de disponibilité que peuvent poser les pannes chez les CSP partenaires. De l’autre, à l’évolution de la stratégie sour l’ère Salesforce.
Dans son analyse du secteur de l’IA générative, l’Autorité de la concurrence va désormais voir en aval. Elle s’est effectivement autosaisie pour se pencher sur les chatbots.
En la matière, le paysage concurrentiel apparaît dynamique, avec la présence de plusieurs acteurs, note-t-elle. Mais les derniers développements montrent que les chatbots pourraient avoir un impact sur le fonctionnement de plusieurs secteurs-clés de l’économie.
L’autorité entend examiner cet aspect en s’intéressant notamment au commerce agentique. La relation entre chatbots et moteurs de recherche n’est en revanche pas dans le champ d’analyse, précise-t-elle.
Le volet énergétique et environnemental, déjà analysé
Son premier avis sur le secteur avait été publié en juin 2024. Il traitait essentiellement de l’amont de la chaîne de valeur. Y furent soulignés, entre autres, la dépendance envers CUDA, le verrouillage potentiel inhérent à l’octroi de crédits cloud pour les start-up de la GenAI et les risques en termes d’accords de non-débauchage et de fixation de salaires.
Plus récemment (mi-décembre 2025), l’autorité a rendu ses conclusions sur un autre sujet : les enjeux concurrentiels liés à l’impact énergétique et environnemental de l’IA. Son analyse suit 3 axes :
Difficultés d’accès au réseau électrique et incertitudes sur le prix de l’énergie
Montée en puissance des services d’IA frugaux
Standardisation, notamment des méthodes de détermination d’empreinte environnementale
Sur l’accès au réseau électrique
L’autorité constate que si l’inférence demeure sensible à la latence, la phase d’entraînement offre davantage de flexibilité en matière d’implantation géographique.
Elle aborde aussi la fin du dispositif d’accès régulé à l’électricité nucléaire historique (ARENH). Lui succède un système dual. D’un côté, la redistribution des bénéfices d’EDF aux consommateurs finaux via un versement nucléaire universel (VNU ; en cours d’examen parlementaire). De l’autre, le développement, par EDF, de contrats d’allocation de long terme adossés à la production nucléaire (CAPN).
Plusieurs opérateurs de datacenters ont passé des commandes sur le fondement des CAPN. L’Autorité de la concurrence surveille ces contrats, craignant qu’ils donnent lieu à des comportements verrouillant le marché des consommateurs grands industriels. Elle entend plus globalement veiller à l’absence de barrières à l’entrée ou à l’expansion pour les acteurs « de taille modeste ». Et reste attentive à la potentielle entrée des grands acteurs du numérique en tant qu’offreurs sur les marchés de l’énergie, surtout à l’étranger.
Sur l’IA frugale
L’autorité estime que la montée en puissance des services d’IA frugaux pourrait favoriser l’émergence de solutions compétitives sur le plan tarifaire. Et ainsi permettre aux fameux acteurs « de taille modeste » de rivaliser avec les grands du secteur. La concurrence pourrait aussi être affectée par le prisme de la qualité, au sens où l’IA s’adapterait à des déploiements moins importants utilisant éventuellement des infrastructures existantes.
Il existe un risque que des acteurs adoptent, de manière coordonnée ou non, et y compris involontairement, des comportements trompeurs qui ne reposeraient pas sur des méthodologies robustes en termes scientifiques. Ou bien qu’ils fassent en sorte de limiter l’innovation ou de ne pas communiquer sur l’empreinte environnementale alors qu’il existe une demande.
Sur la standardisation
La standardisation des méthodes de détermination d’empreinte environnementale est fondamentale pour garantir une concurrence sur la base des mérites, déclare l’autorité.
Elle mentionne deux documents – le référentiel général d’écoconception Arcep/Arcom et celui sur l’IA frugale porté par l’Afnor – et appelle à les voir comme la préfiguration d’une normalisation à l’échelle européenne voire internationale. Mais reste vigilante concernant, en particulier :
Adoption d’outils sans méthodologie sous-jacente robuste
Conditions privant des acteurs du bénéfice de la standardisation ou empêchant l’expression de la frugalité comme paramètre de concurrence
Comportements empêchant cette standardisation ou ralentissant son élaboration
Découragement des acteurs à aller plus loin que ce que propose la standardisation
Snowflake a signé un accord définitif pour le rachat d’Observe, une jeune pousse spécialisée dans l’observabilité basée en Californie et historiquement construite sur l’architecture de données de Snowflake.
Selon The Information, le montant du deal serait d’environ 1 milliard $, ce qui en ferait l’un des plus importants rachats de startup de Snowflake.
La finalisation de l’acquisition est attendue au cours de l’année 2026, sous réserve des conditions habituelles de clôture et d’éventuelles approbations réglementaires.
Observe propose une plateforme d’observabilité capable de collecter et corréler logs, métriques et traces afin d’aider les équipes à diagnostiquer les incidents et surveiller les performances applicatives. La solution s’appuie sur une architecture de graphe de contexte et sur un langage de requête maison (OPAL) pour l’analyse de séries temporelles, avec des fonctions d’assistant IA pour les tâches de troubleshooting et de SRE.
La startup s’est différenciée par un modèle conçu pour ingérer de très grands volumes de télémétrie à moindre coût, en tirant parti du stockage objet et du calcul élastique de Snowflake. Elle revendique plusieurs pétaoctets de données ingérées par mois.
L’observabilité au cœur de l’AI Data Cloud
Snowflake prévoit d’intégrer directement les capacités d’Observe dans son AI Data Cloud, en considérant la télémétrie (logs, métriques, traces) comme des données « de première classe » au même titre que les autres données analytiques.
L’architecture cible repose sur des standards ouverts, notamment Apache Iceberg pour le stockage de tables et OpenTelemetry pour la collecte de données d’observabilité, afin de faciliter l’interopérabilité avec l’écosystème existant.
L’éditeur met en avant la possibilité pour les clients de conserver 100% de leurs données d’observabilité au sein de Snowflake, avec des promesses de réduction des coûts pouvant aller jusqu’à 60% par rapport aux solutions traditionnelles basées sur l’échantillonnage et des durées de rétention courtes.
Du point de vue de Snowflake, l’observabilité devient un enjeu central au moment où les entreprises déploient des agents et applications d’IA de plus en plus complexes, pour lesquels la fiabilité est présentée comme une exigence métier autant que technique.
En absorbant Observe, Snowflake veut offrir une chaîne complète : ingestion, gouvernance et analyse des données métier et de télémétrie, puis construction et supervision d’agents et de modèles, dans un environnement unifié.
L’éditeur positionne la future offre comme un socle d’observabilité pour agents d’IA, capable de gérer des volumes de télémétrie allant du téraoctet au pétaoctet, en s’appuyant sur l’élasticité de son moteur et sur des workflows de résolution assistés par IA.
Un pas de plus vers le marché des opérations IT
Avec ce rachat, Snowflake étend son périmètre au-delà de la seule gestion de données pour entrer plus directement sur le marché des logiciels de gestion des opérations IT, estimé à plus de 50 milliards $ et en croissance d’environ 9% par an.
L’intégration d’Observe renforce la réponse de Snowflake face aux acteurs de l’observabilité et du monitoring (Datadog, Splunk, New Relic, Dynatrace, etc.) ainsi que face aux grands clouds généralistes qui combinent déjà infrastructure, données et outils de supervision.
Pour les clients existants, l’enjeu sera de mesurer dans les prochains mois la maturité des intégrations, la politique tarifaire associée aux volumes de télémétrie et la capacité réelle de la plateforme unifiée à remplacer ou compléter les outils d’observabilité déjà en place.
L’observabilité a beaucoup évolué au cours de la dernière décennie, à l’époque où on l’appelait encore monitoring. Si auparavant, la technologie servait principalement à maintenir les services et les systèmes en état de marche, l’essor des expériences numériques en fait un outil essentiel pour la continuité d’activité, alimentant la prise de décision pour améliorer la satisfaction des clients, prévenir une défaillance ou même pour déterminer quels produits développer.
Aujourd’hui, l’IA déclenche un nouveau séisme et les pratiques d’observabilité doivent assumer des responsabilités plus lourdes encore : superviser les workloads complexes et dynamiques de l’IA pour en garantir la performance et la fiabilité. Cette évolution fait de l’observabilité non seulement un véritable fondement de l’expérience client, mais aussi un facteur clé d’innovation et de croissance dans les entreprises axées sur l’IA.
De la réaction à l’anticipation avec l’observabilité prédictive
Pendant des années, l’observabilité s’est limitée à répondre aux questions : « Qu’est-ce qui s’est passé ? » et « Pourquoi ? ». En 2026, ce paradigme bascule radicalement. Les plateformes d’observabilité deviennent des systèmes d’intelligence pilotés par l’IA, capables non seulement d’expliquer les incidents, mais de les anticiper, de les corriger automatiquement et d’effectuer une auto-réparation pilotée par une IA générative et agentique.
Cette révolution s’appuie sur des LLM et des techniques de recherche augmentée (RAG) appliquées à la télémétrie privée des entreprises : les cahiers de procédures s’automatisent, la corrélation des données s’accélère et l’analyse des causes profondes devient instantanée. Plus besoin de naviguer dans des tableaux de bord complexes ; le langage naturel devient l’interface privilégiée pour interroger les données d’observabilité.
L’observabilité au service de la stratégie métier
Mais cette IA ne doit pas servir qu’à optimiser les performances techniques. Les organisations les plus matures établissent une corrélation directe entre les signaux techniques et l’impact métier réel. Les indicateurs évoluent : ils ne mesurent plus seulement la latence ou la disponibilité des serveurs, mais le revenu à risque, le coût par demande et l’impact sur l’expérience client.
Cette approche business-centric redéfinit les priorités IT. Chaque décision d’infrastructure, chaque investissement en observabilité, doit être justifié par son impact sur les SLO (objectifs de niveau de service), le MTTR (Mean Time To Resolution) et, à terme, sur la satisfaction et la fidélité des clients. 2026 marque la fin de l’IT en silo, déconnectée des enjeux métiers.
Maîtriser les coûts : l’enjeu oublié de l’observabilité
Les factures d’observabilité explosent. C’est malheureusement une réalité pour de nombreuses entreprises. Elles font face à des surcoûts imprévus liés à l’ingestion de données, à la cardinalité élevée et aux fonctionnalités premium. En conséquence, beaucoup consolident leurs chaînes d’outils fragmentées et renforcent le contrôle des coûts liés à l’ingestion, au stockage et à la conservation des données. Pour cela, les organisations se tournent vers les plateformes unifiées, la consolidation étant perçue comme un gain à la fois en termes de coûts et de productivité.
Mais attention : la consolidation ne suffit pas. En 2026, les utilisateurs finaux devront aller au-delà des économies globales et examiner attentivement le modèle de facturation automatique de chaque fournisseur. Les prix liés à ces surcoûts peuvent encore générer des factures d’un montant inattendu si la croissance des données n’est pas étroitement contrôlée.
De même, les acheteurs doivent évaluer la puissance des capacités de gestion du pipeline de données de chaque plateforme (filtrage, routage, fédération et stockage hiérarchisé, par exemple) afin de pouvoir déterminer activement quelles données sont collectées, où elles sont stockées et combien de temps elles seront conservées. Ce n’est qu’en combinant la consolidation avec une facturation transparente et des contrôles rigoureux du pipeline que les organisations peuvent maintenir les dépenses d’observabilité à un niveau prévisible et alignées sur la valeur qu’elles tirent des données.
OpenTelemetry : la norme qui libère
L’émergence d’OpenTelemetry (OTel) comme standard par défaut marque un tournant majeur. Finie l’époque des agents propriétaires verrouillant les organisations dans des écosystèmes fermés : OTel offre une architecture ouverte et interopérable pour l’ingestion de métriques, de logs et de traces.
Ce qui différenciera les organisations en 2026, ce ne sera plus l’ingestion des données, mais ce qu’elles en font après : analyses à haute cardinalité, espaces de travail guidés par l’IA, workflows intelligents. L’ouverture du standard crée un terrain de jeu égal, où l’innovation se concentre sur la valeur, pas sur le verrouillage technologique.
L’observabilité au cœur de l’IA et du cloud complexe
L’explosion des workloads d’IA et des architectures cloud hyperscale impose une nouvelle norme : l’observabilité des LLM et des agents IA. En 2026, superviser la latence, le coût et le comportement des modèles de langage deviendra aussi critique que de monitorer une base de données. La gouvernance des agents IA, la visibilité des pipelines IA, le suivi des ressources GPU… autant de domaines où l’observabilité devient indispensable.
Parallèlement, les environnements hybrides et à l’edge demeurent ancrés dans le cloud natif et Kubernetes, mais l’observabilité y joue un rôle nouveau : elle devient le catalyseur d’expériences numériques résilientes basées sur l’IA et les API.
En 2026, l’observabilité ne sera pas une simple évolution technologique. C’est une refonte complète du modèle : de la réaction à l’anticipation, de l’infrastructure aux résultats métiers, de la complexité à la transparence, et de l’isolement à l’intégration écosystémique. Les organisations qui maîtriseront ces quatre piliers (observabilité prédictive, alignement métier, maîtrise des coûts et standardisation ouverte) seront celles qui tireront le maximum de valeur de leurs données et de leurs systèmes. Les autres risquent de rester bloquées dans une observabilité fragmentée, coûteuse et inefficace.
*Stéphane Estevez est EMEA Observability Market Advisor chez Splunk
Disposer d’une « généalogie » des modèles d’IA ouverts favoriserait-il l’exercice des droits RGPD ?
La CNIL en fait le pari. Elle expérimente en tout cas un tel outil. Fondé sur les données de la plate-forme Hugging Face, il permet de visualiser l’ascendance et la descendance des modèles. En ligne de mire, les personnes concernées par la mémorisation de leurs informations personnelles… et par le risque de ruissellement de ces informations entre les modèles.
La base de données sous-jacente est en accès libre. Mise à jour quotidiennement, elle contient des éléments fournis la plupart du temps de manière déclarative par les entités qui publient les modèles – et les datasets. On en retrouve déjà le contenu à plusieurs niveaux de l’explorateur Hugging Face, dont des arborescences sur les pages des modèles.
Deux visualisations et un mode « expert »
Sur ce socle (plus exactement sur la base de données telle qu’elle était au 1er septembre 2025), la CNIL a structuré un graphe de connaissances. Elle y distingue cinq types d’entités : modèles, datasets, personnes, organisations et utilisateurs (qui sont soit une personne, soit une organisation).
L’outil n’affiche pas immédiatement le graphe. Il fournit d’abord quelques indicateurs à propos du modèle recherché (sa date de publication et la tâche qu’il remplit, ainsi que le nombre de téléchargements, de citations et de mentions « j’aime »), puis présente les parents et les enfants importants, en priorisant ceux qui ont le plus de citations, puis de téléchargements.
Un mode « recherche experte » permet de filtrer le graphe (types de nœuds, types de relations) et de le télécharger.
Hugging Face invité à permettre une meilleure identification des responsables de publication
On est censé pouvoir trouver un modèle en recherchant son nom ou l’identifiant de son repo. Dans la pratique, seule cette dernière option apparaît produire des résultats. La saisie semi-automatique accuse une certaine latence (plusieurs secondes) et des erreurs surviennent parfois.
La CNIL envisage une fonctionnalité d’envoi automatisé de requête à tous les modèles suspectés. L’analyse de leurs réponses permettrait théoriquement de déterminer lesquels régurgitent des données personnelles.
Un formulaire pourrait ensuite permettre de contacter les auteurs des modèles problématiques. Une évolution de la plate-forme Hugging Face pourrait toutefois être nécessaire pour une meilleure identification des responsables de publication, suggère la commission…
L’industrie des semi-conducteurs a franchi une étape historique avec l’annonce de la technologie 2nm (dite N2). Pour atteindre une telle finesse de gravure, TSMC a dû opérer un changement radical de paradigme en abandonnant l’architecture FinFET au profit des transistors à feuilles nanométriques, ou GAAFET (Gate-All-Around).
Cette innovation permet d’entourer le canal de conduction sur ses quatre faces, offrant un contrôle électrique quasi parfait là où les structures précédentes commençaient à laisser fuiter de l’énergie. Selon TSMC, les bénéfices sont massifs : à performance égale, une puce 2 nm consomme environ 30 % d’énergie en moins que son prédécesseur en 3 nm. Cette efficacité thermique libère une « marge de manœuvre » précieuse qui transforme radicalement les capacités de l’intelligence artificielle embarquée (Edge AI).
L’IA « on-device » : la fin de la dépendance au Cloud ?
Jusqu’à présent, l’IA sur smartphone était limitée par la chaleur et la mémoire. Les modèles les plus puissants nécessitaient des serveurs distants, posant des problèmes de latence et de confidentialité. Le passage au 2 nm change la donne. Grâce à l’augmentation de la densité des transistors, les ingénieurs peuvent désormais intégrer des unités de traitement neuronal (NPU) capables de gérer des modèles de langage de plus de 10 milliards de paramètres directement sur l’appareil.
Cette autonomie de calcul apporte des bénéfices immédiats. La confidentialité devient totale puisque les données ne quittent plus le téléphone, et la réactivité devient instantanée pour la traduction en temps réel ou la retouche vidéo complexe. Surtout, cela permet l’éclosion de véritables « agents d’IA » autonomes, capables de comprendre le contexte de l’utilisateur en continu sans transformer l’appareil en radiateur de poche ni vider la batterie en quelques heures.
Mais cette révolution a un prix. Les capacités de production pour 2026 sont déjà saturées, Apple ayant préempté la majeure partie des lignes de production pour ses futurs processeurs, laissant Nvidia et AMD se disputer les quotas restants pour le secteur des serveurs.
Le coût de production d’un seul wafer de 2 nm est désormais estimé à 30 000 dollars, une barrière financière qui renforce la domination de TSMC et des acteurs les plus riches de la tech.
De la robotique à l’Angström
L’impact du 2 nm dépassera largement le cadre du smartphone. Cette capacité de traiter des algorithmes de vision par ordinateur avec une consommation minimale est le chaînon manquant pour la robotique légère, les drones autonomes et les lunettes de réalité augmentée.
Alors que le 2 nm entame son cycle de vie, TSMC prépare déjà l’étape suivante pour 2027 : l’ère de l’Angström avec le procédé A16. En introduisant l’alimentation par l’arrière de la puce, cette future génération promet de repousser encore plus loin les frontières de l’infiniment petit, confirmant que la course à la puissance ne fait que commencer.
« La politique de la DGFiP en matière de contrôle n’a jamais eu pour priorité de reposer sur la conciliation. »
Amélie de Montchalin, ministre de l’Action et des Comptes publics, a cru bon de le signaler en réponse aux observations de la Cour des comptes.
Cette dernière s’est intéressée à la lutte contre la fraude fiscale. Elle en dresse un bilan « mitigé […] après une décennie de transformations » : les sanctions ne sont ni plus fréquentes, ni plus sévères.
Le SI du contrôle fiscal, plombé par ses silos
Les sages de la rue Cambon réitèrent un constat formulé à plusieurs reprises ces dernières années : le SI du contrôle fiscal est conçu en silos, avec des applications spécialisées par impôt ou par tâche, anciennes, peu ergonomiques et dépourvues d’interopérabilité. Le manque d’interconnexion fait obstacle à l’exploitation des outils de data mining, effective depuis 2016.
Sur Iliad (application centrale des services chargés de la gestion fiscale), les données manquent de précision quant aux motifs ayant provoqué des contrôles. De plus, elles n’indiquent pas la part de ceux ayant débouché sur un dossier en règle, sur une erreur ou sur une fraude assortie d’une action de rectification.
Sur Alpage (pilotage et statistiques), les données sont saisies manuellement et a posteriori ; ce qui peut engendrer des erreurs ou des imprécisions. Par ailleurs, les « codes thésaurus » correspondant à des motifs de rectification sont absents dans 5 à 10 % des contrôles enregistrés, rendant moins fiable et plus fastidieuse la mesure de leur efficacité.
Pilat, un outil unifié… en projet depuis 2018
En 2018, la DGFiP avait lancé le projet Pilat, censé aboutir à un outil unifié de pilotage et d’analyse de la chaîne du contrôle fiscal. La mise en service était prévue pour 2022, mais l’initiative a pris du retard. En parallèle, son coût prévisionnel a plus que triplé entre 2017 et 2024 (de 36 à 123,5 M€).
En l’absence d’un tel outil, les priorités diffèrent d’une direction locale à une autre, note la Cour des comptes. Toutes ne recherchent pas forcément l’objectif répressif. Certaines n’exploitent pas la potentielle récidive d’un contribuable déjà sancitonné par une pénalité exclusive de bonne foi à hauteur de 40 % dans les 6 années qui précèdent.
Le data mining, beaucoup de contrôles, peu de recettes
En 2023, la DGFiP a réalisé ses premières études évaluant l’efficacité du data mining.
Le taux de pertinence des listes ainsi établies varie en fonction des impôts. Pour l’IR, par exemple, 65 % des dossiers signalés par l’algo ont fait l’objet d’un rehaussement effectif.
Le taux est particulièrement élevé pour les listes relatives au report erroné de réductions d’impôt dans le cadre du dispositif Pinel* (93 %) ou portant sur les réductions et crédits d’impôt (80 %). Il ne l’est pas autant pour, entre autres, les droits de mutation à titre gratuit, du fait d’une intégration peu aboutie des informations communiquées par les notaires.
L’objectif de réaliser 50 % des contrôles sur la base des listes issues du data mining a été atteint en 2022 s’agissant des professionnels. On en est à environ 40 % pour les particuliers. Pour autant, les dossiers ouverts en conséquence ont un poids réduit dans les recettes : 13,8 % des droits et pénalités mis en recouvrement en 2023, alors qu’ils ont représenté 44 % des contrôles cette année-là.
Plusieurs facteurs peuvent être avancés, reconnaît la Cour des comptes. En particulier, ne sont considérés comme issus du data mining que les dossiers non ouverts au préalable par un agent du fisc. Autre élément, qu’a d’ailleurs souligné Amélie de Montchalin : les contrôles concernés portent a priori sur des enjeux moins importants que les contrôles sur place (en moyenne, 3473 € mis en recouvrement, contre 16 676 €).
Il est, plus globalement, impossible de mesurer la contribution du data mining à l’évolution du rendement moyen par agent, vu les autres évolutions stratégiques intervenues sur la période étudiée (ciblage des contrôles, développement des échanges d’informations).
Les SI du ministère de la Justice compliquent le suivi de la répression pénale
Jusqu’en 2018, l’autorité judiciaire n’était saisie des affaires de fraude par le fisc qu’à la discrétion de ce dernier.
Une réforme a mis fin à ce principe dit « verrou de Bercy ». Notamment afin de prévenir le soupçon qu’une autorité politique intervienne pour empêcher la transmission de dossiers d’importance.
L’autorité judiciaire est désormais saisie chaque année d’environ 800 M€ d’impôts éludés, pour un montant moyen par dossier de l’ordre de 400 k€. Cependant, les SI centralisés du ministère de la Justice ne permettent pas de suivre le traitement pénal de ces dossiers en fonction des montants considérés. Ce qui limite nettement l’appréciation de la répression pénale.
Le montant du préjudice signalé n’est effectivement pas retracé dans ces SI. Si une information à un niveau agrégé existe, elle ne l’est qu’au sein de chaque parquet.
* Réduction d’impôt sur le revenu à l’occasion d’un investissement locatif sous réserve de s’engager à louer le logement nu en tant que résidence principale pour au moins 6 ans.
Butterfly Effect bat désormais pavillon américain.
La start-up vient en tout cas de se vendre à Meta ; possiblement pour plus de 2 Md$.
Fondée en 2022, elle avait d’abord développé un « assistant tout-en-un » permettant d’exploiter divers LLM à travers leurs API.
Le produit, nommé Monica AI, existe toujours. Mais il n’est plus la vitrine depuis le lancement de Manus. C’était début mars 2025, quelques semaines après l’électrochoc DeepSeek.
Une start-up chinoise devenue licorne singapourienne
Comme DeepSeek, Butterfly Effect est né en Chine. Il a cependant fini par en délocaliser son siège social, mi-2025. Le déclencheur : un tour de table de 75 M$ emmené par le fonds américain Benchmark… et l’enquête consécutivement conduite par le Trésor sous le régime des investissements à l’étranger.
De ce tour de table, Butterfly Effect était ressorti valorisé à environ 500 M$. L’entreprise est maintenant basée à Singapour. Elle continuera à opérer sur place jusqu’à nouvel ordre, nous affirme-t-on. Même si du point de vue organisationnel, le cœur de l’équipe sera intégré à Meta AI.
Le seuil des 100 M$ de revenu annuel récurrent avait officiellement été franchi mi-décembre. La société comptait alors une centaine d’employés, entre Singapour, Tokyo et San Francisco. Il était question d’ouvrir « bientôt » un bureau à Paris.
Du back-end à l’optimisation SEO, Manus en bâtisseur de sites web full-stack
Entre autres chiffres, Butterfly Effect annonce avoir créé, depuis le lancement de Manus, quelque 83 millions d’« ordinateurs virtuels ». L’entreprise se réfère là à sa technologie de navigateur cloud, intégrée dans l’interface de discussion. Elle y a récemment ajouté une extension (Chrome/Edge) qui permet à l’IA de travailler dans le navigateur local.
Autre brique ajoutée ces dernières semaines : un constructeur de sites web full stack – avec back-end, authentification, base de données, achat/connexion de noms de domaines, optimisation SEO (génération d’une version HTML statique spécifiquement pour les robots) et analytique. Elle fait partie des fonctionnalités réservées aux forfaits payants : Basic (20 $/mois), Plus (40 $/mois), Pro (200 $/mois), Team (à partir de 40 $/siège) et Enterprise.
Certifiée SOC 2 Type I et II, l’offre est pour le moment hébergée aux États-Unis (région AWS en Virginie). Elle met à contribution des modèles d’Anthropic, de Google, d’OpenAI. Elle dépend aussi de Cloudflare (réseau), de HCaptcha (sécurité), d’Intercom (support), de Revenue Cat (paiement), de Stripe (facturation) et de Twilio (notifications SMS).
Les jalons d’un écosystème… jusqu’en France
Outre ses partenariats académiques et son offre de crédits pour les start-up, Butterfly Effect a un programme d’ambassadeurs. Deux d’entre eux se trouvent en France : Niels Rolland (cofondateur et CEO de Paatch, communauté d’AI builders) en Pāvels Baskakovs (ancien de Deloitte et Chainalysis).
Depuis peu existe aussi la Manus Academy. Cette plate-forme de formation à l’usage de l’IA est actuellement en accès anticipé, en anglais, japonais et portugais. Elle s’inscrit dans le prolongement du Build Club, projet que Butterfly Effect porte aux côtés d’acteurs comme OpenAI, Crew AI, Leonardo AI, Groq, LangFlow et Vercel.
La « recherche étendue » est disponible depuis plus longtemps, mais son déploiement sur l’ensemble des forfaits payants n’est pas finalisé. Elle est l’une des marques de fabrique de Manus : plutôt que d’étendre la fenêtre de contexte, on instancie autant d’agents que nécessaire et on les exécute en parallèle.
Une multimodalité couleur Google
Arrivée en mai, la génération d’images repose aujourd’hui sur GPT Image 1 (OpenAI) et sur Nano Banana Pro (Google), au sein d’une espace de travail (« vue design ») qui y associe un agent de recherche et un éditeur interactif. Nano Banana Pro est aussi à la base du générateur de diapositives, réservé aux forfaits payants.
Manus sait générer des vidéos depuis juin, en particulier à l’appui du modèle Veo 3 de Google. En parallèle, il a été doté d’un système de planification de tâches. Et, par après, d’une organisation en projets.
Mi-novembre, Butterfly Effect avait promis que Manus serait disponible dans le cadre de l’offre Microsoft Agent 365.
Le mode chat est accessible à tous les utilisateurs. En mode agent, on ne peut utiliser, sur la version gratuite, que l’architecture dite Manus Lite.
Alphabet, maison mère de Google, vient d’annoncer l’acquisition d’Intersect pour 4,75 milliards $ en cash, auxquels s’ajoute la reprise de la dette existante. Cette opération représente l’une de ses transactions les plus importantes et marque un tournant dans sa stratégie de développement de centres de données dédiés à l’IA.
L’enjeu est de taille : permettre à Google d’accéder à davantage d’électricité pour ses infrastructures, alors que le réseau électrique américain, vieillissant, peine à absorber une demande énergétique qui explose pour la première fois depuis des décennies. L’IA constitue le principal moteur de cette croissance fulgurante.
« Intersect nous aidera à accroître nos capacités, à opérer avec plus d’agilité dans la construction de nouvelles centrales électriques en phase avec la nouvelle charge des centres de données, et à repenser les solutions énergétiques pour stimuler l’innovation et le leadership des États-Unis » déclare Sundar Pichai, directeur général de Google et d’Alphabet.
Un portefeuille énergétique impressionnant
Aux termes de cet accord, Alphabet achète les projets énergétiques et de centres de données d’Intersect, qu’ils soient en développement ou en construction. L’entreprise possède 15 milliards $ d’actifs en exploitation ou en construction.
Elle exploite actuellement environ 7,5 gigawatts de capacité solaire et de stockage, et prévoit de développer 8 gigawatts supplémentaires. Pour référence, un gigawatt équivaut approximativement à la production d’un réacteur nucléaire et peut alimenter environ 750 000 foyers. L’essentiel de cette capacité est concentré au Texas.
Son PDG, Sheldon Kimber, avait d’ailleurs surnommé le Texas le « Disneyland de l’énergie » en raison de ses abondantes ressources éoliennes et solaires. Parmi ses projets phares dans cet État figure « Quantum », un système de stockage d’énergie propre construit directement à côté d’un campus de centres de données pour Google.
L’opération s’inscrit dans une stratégie plus large d’Alphabet dans le secteur énergétique. Google, en partenariat avec TPG Rise Climate, avait déjà soutenu Intersect lors d’une levée de fonds de plus de 800 millions $ en décembre 2024.
Une structure d’acquisition sur mesure
Dans le cadre de cet accord, Alphabet acquiert la plateforme de développement et les effectifs d’Intersect, y compris les actifs en développement déjà sous contrat avec Google. Intersect conservera sa propre marque et restera dirigée par Sheldon Kimber.
Les actifs opérationnels existants de la société au Texas, ainsi que ses actifs opérationnels et en développement en Californie, ne seront pas inclus dans l’acquisition et continueront de fonctionner comme une entreprise indépendante, soutenue par ses investisseurs actuels. TPG Rise Climate conservera une participation dans ces actifs.
Intersect explorera également un éventail de technologies émergentes pour accroître et diversifier l’approvisionnement énergétique, tout en soutenant les investissements de Google dans ses centres de données américains.
« En acquérant un développeur et pas seulement un contrat d’achat d’électricité, Google s’offre la flexibilité nécessaire pour construire où et quand il le souhaite » estime Ben Hertz-Shargel, analyste du cabinet Wood Mackenzie cité par Bloomberg.
L’IA générative (GenAI) entre dans une phase où l’expérimentation cède la place à l’intégration concrète. En effet, les organisations commencent à considérer ces modèles comme des composants opérationnels à part entière plutôt que comme de simples assistants autonomes. L’attention se porte désormais sur leur comportement une fois intégrés dans des environnements où la performance, la protection de l’information et la cohérence dans la durée sont déterminantes.
Alors cette transition s’accélère, le défi central devient la définition d’une approche architecturale capable de garantir un usage fiable à grande échelle, tout en maîtrisant les coûts à long terme et la continuité opérationnelle.
L’architecture comme socle structurel de la fiabilité de l’IA générative
Les systèmes d’entreprise imposent des contraintes qui conditionnent la manière dont l’IA générative peut être intégrée. Dans ce cadre, les grands modèles de langage (LLM) publics offrent une mise à l’échelle rapide et un accès à de vastes capacités linguistiques, sans exiger d’infrastructure dédiée. Leur principal atout tient à leur flexibilité, plutôt qu’à une maîtrise fine des usages. À l’inverse, les modèles privés s’inscrivent dans une logique architecturale différente, avec des environnements construits autour de données propriétaires, de périmètres d’accès définis et de modalités d’intégration pilotées directement par l’organisation.
Cette distinction demeure structurante, car l’alignement architectural détermine si l’IA générative reste cantonnée à des usages exploratoires ou si elle s’insère dans des processus où la précision, la prévisibilité et la traçabilité sont indispensables. Une fois cet alignement établi, le rôle du modèle se clarifie, ce qui permet de définir des stratégies de déploiement compatibles à la fois avec les exigences opérationnelles et les cadres réglementaires.
Intégrer la confidentialité dans la structure du système
Dès lors que l’IA générative interagit avec des informations sensibles, la protection des données devient une exigence structurelle et non un simple ajustement de surface. L’exposition d’informations confidentielles ou la perte de contrôle sur leur circulation rappelle la situation, évoquée par analogie, où des données de carte bancaire seraient notées sur papier avant une transaction, ce qui suscite immédiatement des doutes sur la fiabilité du processus chargé de les traiter.
Les déploiements privés répondent largement à cette problématique en maintenant les traitements au sein des frontières de l’entreprise, ce qui préserve la souveraineté des données et limite les flux inutiles. Lorsque des échanges s’avèrent nécessaires, des intégrations via des interfaces de programmation (API) sécurisées et des mécanismes de réplication contrôlée permettent d’assurer le chiffrement, de faire respecter les règles d’autorisation et de ne partager que les données strictement nécessaires à la tâche.
Cette approche fait de la confidentialité une propriété intrinsèque de l’architecture et crée les conditions pour un comportement cohérent de l’IA générative dans des environnements réglementés ou à forts enjeux. L’intégration s’inscrit alors dans les mêmes standards opérationnels que le reste de l’infrastructure de l’entreprise, qu’il s’agisse de la protection de la vie privée, du contrôle des accès ou de la traçabilité, sans dépendre de politiques externes sur lesquelles l’organisation dispose d’une influence limitée.
Une stratégie opérationnelle guidée par l’alignement des cas d’usage
Une fois les contraintes architecturales posées, la stratégie opérationnelle détermine la manière dont l’IA générative est mobilisée. Les modèles publics sont particulièrement adaptés à des usages larges tels que la génération de contenus, la synthèse, l’aide à la traduction ou les premières phases d’analyse, dans lesquelles des bases de connaissances étendues et des modèles généralistes accélèrent la production de résultats.
Lorsque les exigences se précisent, de nouveaux critères orientent le choix du modèle. Les modèles privés trouvent leur place dans des environnements marqués par des impératifs de traçabilité, une forte spécialisation métier ou une supervision réglementaire stricte. Ils permettent de maintenir une chaîne de responsabilité fiable autour de l’information et s’intègrent plus naturellement aux systèmes d’entreprise existants, fondés sur des journaux d’audit et une gestion contrôlée de la lignée des données.
À mesure que les usages se structurent, le Process Prompt Engineering s’impose comme un élément clé. Les interactions évoluent vers des instructions formalisées et intentionnelles, conçues pour s’aligner sur la logique métier et les exigences de conformité. L’IA générative cesse alors d’être une interface conversationnelle pour devenir une étape gouvernée au sein de workflows automatisés.
La structure de coûts comme facteur stratégique de long terme
La question des coûts s’impose dès que les usages montent en charge. Les modèles publics réduisent les barrières initiales, bien que leurs coûts récurrents, liés notamment à l’utilisation des API, aux sorties de données ou à la dépendance à des systèmes externes, puissent croître sensiblement dans le temps. Les modèles privés impliquent un investissement initial plus élevé, tandis que la concentration des traitements dans des environnements internes limite les dépendances externes et stabilise la planification financière sur le long terme.
Cette structure devient encore plus favorable lorsqu’elle s’articule avec des briques d’entreprise telles que des couches d’API sécurisées, des moteurs d’orchestration ou des plateformes d’intelligence des données. Ces ensembles facilitent des déploiements sur site ou hybrides tout en conservant un haut niveau de maîtrise de l’information et de cohérence de l’infrastructure. Dans ce contexte, le coût ne se mesure plus uniquement en termes financiers, mais s’apprécie au regard du niveau de contrôle, de la résilience et de la capacité d’évolution dans le temps.
Progressivement, le coût se transforme ainsi d’une contrainte en un paramètre stratégique, garantissant que l’IA générative puisse s’étendre sans fragiliser les opérations ni générer des schémas de dépenses imprévisibles.
Lorsque coûts, architecture et choix opérationnels interagissent, le rôle de l’IA générative se stabilise. L’architecture fixe le degré de contrôle et de confidentialité, la stratégie opérationnelle aligne les tâches avec le type de modèle approprié, et la structure de coûts assure la soutenabilité de ces décisions dans la durée. L’ensemble façonne un modèle de déploiement capable de fonctionner de manière fiable à grande échelle, en s’intégrant aux systèmes d’entreprise de façon prévisible et cohérente.
Dans cette configuration, l’IA générative quitte progressivement le registre de l’expérimentation pour devenir une capacité gouvernée, intégrée à l’environnement informationnel global.
*Par Michael Curry est President, Data Modernization Business Unit chez Rocket Software
Le 9 décembre dernier, à Paris, NetMedia Group a inauguré la première édition des IAWARDS. À travers une dizaine de catégories, ce nouvel événement a mis en lumière des initiatives démontrant de façon tangible l’impact de l’intelligence artificielle dans les métiers, avec une attention particulière portée aux fonctions achats et supply chain.
Imaginés comme un rendez-vous de valorisation et d’analyse des usages, les IAWARDS ont rassemblé l’écosystème IA et business autour d’un objectif commun : récompenser des projets déjà déployés au sein des organisations, capables de prouver leur valeur opérationnelle et leurs résultats concrets.
Soutenus par les 11 marques médias de NetMedia Group, dont Décision Achats, les prix ont embrassé un large éventail de fonctions, allant de l’e-commerce au marketing, en passant par la finance, l’IT, la relation client ou encore la performance commerciale.
𝐋𝐞𝐬 𝐈𝐀𝐖𝐀𝐑𝐃𝐒 𝐛𝐲 𝐍𝐄𝐓𝐌𝐄𝐃𝐈𝐀 𝐆𝐑𝐎𝐔𝐏, 𝐜’𝐞𝐬𝐭 : 𝐋𝐞𝐬 𝐦𝐞𝐢𝐥𝐥𝐞𝐮𝐫𝐞𝐬 𝐢𝐧𝐢𝐭𝐢𝐚𝐭𝐢𝐯𝐞𝐬 𝐈𝐀 𝐝𝐚𝐧𝐬 𝟕 𝐬𝐞𝐜𝐭𝐞𝐮𝐫𝐬 𝐜𝐥é𝐬 : marketing, e-commerce, finance, achats, relation client, IT, performance commerciale. 𝐔𝐧 𝐣𝐮𝐫𝐲 𝐝’𝐞𝐱𝐩𝐞𝐫𝐭𝐬 pour sélectionner les leaders qui font bouger les lignes. 𝐔𝐧𝐞 𝐬𝐨𝐢𝐫é𝐞 𝐩𝐨𝐮𝐫 𝐜é𝐥é𝐛𝐫𝐞𝐫 𝐥’𝐢𝐧𝐧𝐨𝐯𝐚𝐭𝐢𝐨𝐧… et celles et ceux qui la portent.
Composé de dirigeants, d’experts métiers et de professionnels de terrain, le jury a notamment salué la capacité des candidats à franchir le cap de l’expérimentation pour ancrer durablement l’intelligence artificielle au cœur des processus, au service de la performance, de l’efficacité opérationnelle et de la création de valeur.
Félicitations aux lauréats de cette première édition !
Marketing : performance & stratégie prédictive par l’IA
Or – MV Group
Argent – Actionable & OUIGO
Bronze – ADROI
E-commerce : Stratégie Data & IA appliquée au e-commerce
Or – Actionable & Carrefour
Argent – Botmind
Quel est le prix à payer pour développer une politique nationale sur l’IA ? Alors que la France et l’Europe l’érigent en priorité stratégique, l’Autorité de la concurrence publie une étude sur son coût énergétique et environnemental, après son premier avis sur l’IA générative publié à l’été 2024.
Et le gendarme de la concurrence tire la sonnette d’alarme : la consommation électrique des centres de données pourrait représenter 4 % de la consommation nationale française dès 2035, tandis que les géants du secteur sécurisent déjà leurs approvisionnements en énergie, risquant de fausser le jeu concurrentiel.
Une consommation électrique qui pourrait doubler d’ici 2030
Les chiffres parlent d’eux-mêmes. Les centres de données représentent actuellement environ 1,5 % de la consommation mondiale d’électricité, mais leur impact local s’avère bien plus significatif. L’Autorité anticipe que leur consommation pourrait au moins doubler d’ici 2030 pour atteindre 945 TWh dans le monde.
En France, la situation est tout aussi préoccupante. La consommation des centres de données, estimée à 10 TWh au début des années 2020, pourrait grimper entre 12 et 20 TWh en 2030, puis entre 19 et 28 TWh en 2035, représentant près de 4 % de la consommation électrique nationale. Face à cette explosion, les grands acteurs américains multiplient déjà les partenariats pour sécuriser leur approvisionnement en énergie décarbonée, qu’il s’agisse d’énergies renouvelables ou du nucléaire.
Des ressources naturelles sous pression
Au-delà de l’électricité, l’impact environnemental de l’IA mobilise d’importantes ressources tout au long de la chaîne de valeur : eau, métaux rares et foncier. Selon l’Arcep, le volume d’eau prélevé par les centres de données a atteint 0,6 million de mètres cubes en 2023, avec une croissance annuelle soutenue de 17 % en 2022 et 19 % en 2023. À cette consommation directe s’ajoutent les prélèvements indirects liés à la production d’électricité, estimés à plus de 5,2 millions de mètres cubes par an.
Plusieurs acteurs du numérique ont d’ailleurs annoncé une forte augmentation de leurs émissions de gaz à effet de serre, allant de 30 à 50 %, résultant notamment de l’augmentation de la consommation énergétique de leurs centres de données.
Trois enjeux concurrentiels majeurs
L’Autorité identifie trois types d’enjeux concurrentiels découlant de cette situation.
Premier enjeu : l’accès à l’énergie et la maîtrise de son coût. Les acteurs du secteur sont confrontés à des difficultés de raccordement au réseau électrique et à des incertitudes sur le prix de l’énergie. L’électricité représente entre 30 et 50 % des charges d’exploitation d’un centre de données, et le contexte énergétique est en pleine mutation, notamment avec la fin du dispositif ARENH au 31 décembre 2025.
Le nouveau système dual se met en place avec le versement nucléaire universel et les contrats d’allocation de long terme adossés à la production nucléaire proposés par EDF. L’Autorité se montre vigilante : elle veillera à ce que la position privilégiée des acteurs les plus importants ne leur permette pas de sécuriser des approvisionnements d’énergie dans des conditions avantageuses au détriment des plus petits. Elle rappelle également qu’EDF ne doit pas adopter de comportements anticoncurrentiels tels que la discrimination, le refus d’approvisionnement ou le verrouillage du marché.
Deuxième enjeu : la frugalité comme paramètre de concurrence. Face à l’impact environnemental de l’IA, le concept de frugalité se développe, défini comme la consommation optimisée des ressources dans un objectif de minimisation de l’impact environnemental. Les demandeurs montrent un intérêt croissant pour des outils plus frugaux, tandis que plusieurs acteurs développent des modèles de plus petite taille ou communiquent sur leur empreinte environnementale.
L’Autorité considère que la frugalité peut contribuer à l’animation du jeu concurrentiel en affectant le prix, la qualité et l’innovation. Elle peut notamment permettre à des entreprises de taille plus modeste de rivaliser avec les grands acteurs. Toutefois, elle met en garde contre plusieurs risques : l’adoption de comportements trompeurs en termes de frugalité, le fait de ne pas communiquer sur l’empreinte environnementale alors qu’il existe une demande, ou encore le fait de limiter l’innovation en matière de frugalité.
Troisième enjeu : la standardisation de l’empreinte environnementale. L’Autorité constate que les entreprises communiquent peu sur l’impact environnemental de leurs solutions, qu’il n’existe pas de méthodologie partagée et que les mesures entreprises sont difficilement comparables.
Plusieurs outils ont été développés, comme le référentiel général d’éco-conception des services numériques co-publié par l’Arcep et l’Arcom, ou encore le référentiel général pour l’IA frugale porté par l’Afnor. D’autres outils se concentrent sur la mesure de l’empreinte énergétique et carbone, tandis que certains acteurs proposent la mise en place d’une notation environnementale permettant de comparer les différents modèles.
Mais là encore, l’Autorité alerte sur plusieurs problématiques : l’adoption d’outils qui ne s’appuieraient pas sur une méthodologie robuste, l’adoption d’une standardisation privant certains acteurs de son bénéfice, les comportements empêchant la standardisation, ou encore les échanges entre concurrents portant sur des informations commercialement sensibles.
Elle insiste particulièrement sur la nécessité de disposer de données fiables et transparentes sur l’empreinte énergétique et environnementale de l’IA. Une transparence qui permettrait à la frugalité de pleinement jouer son rôle de paramètre de concurrence. Elle souligne également qu’il convient de s’assurer que l’accès aux zones adaptées à l’implantation de centres de données et à l’énergie, en particulier à l’électricité d’origine nucléaire, ne se fasse pas à l’avantage de certains acteurs uniquement.
Qui a parlé d’une bulle spéculative sur l’IA ? Databricks annonce avoir levé plus de 4 milliards de $ lors d’un tour de financement de Série L, portant sa valorisation à 134 milliards $.
Le tour de financement a été mené par Insight Partners, Fidelity Management & Research Company et J.P. Morgan Asset Management. La présence de gestionnaires d’actifs majeurs comme BlackRock et Blackstone témoigne d’un intérêt croissant des grandes institutions financières pour les investissements dans le secteur de l’intelligence artificielle.
Une partie des fonds sera utilisée pour permettre aux employés de procéder à des ventes secondaires d’actions. Ali Ghodsi a également indiqué au Wall Street Journal que l’entreprise prévoit de créer des milliers de nouveaux postes, notamment des chercheurs en IA, pour développer un laboratoire d’IA qui n’emploie actuellement qu’une centaine de personnes.
Une croissance soutenue
L’investissement soutiendra également de futures acquisitions dans le domaine de l’IA et l’approfondissement de la recherche.
Avec cette nouvelle levée de fonds, Databricks dépasse désormais largement la valorisation ( 75 milliards) de son concurrent coté en bourse Snowflake.
Databricks, fondée en 2013 à San Francisco, affiche des résultats financiers impressionnants avec un chiffre d’affaires annualisé de 4,8 milliards $ au troisième trimestre, soit une progression de plus de 55% en un an. En septembre dernier, ce taux s’établissait à 4 milliards $.
L’entreprise compte ainsi plus de 700 clients, sur plus de 20 000, générant un revenu annuel supérieur à un million. Cette levée de fonds intervient quelques mois seulement après qu’elle ait levé 1 milliard de dollars pour une valorisation de 100 milliards $
Trois axes stratégiques pour les applications intelligentes
Le nouveau capital servira à accélérer le développement de trois offres stratégiques :
> Lakebase, présentée comme la première base de données Postgres sans serveur conçue spécifiquement pour l’ère de l’IA. Lancé il y a six mois, ce produit compte déjà des milliers de clients et enregistre une croissance de revenus deux fois plus rapide que le produit d’entreposage de données de Databricks.
> Databricks Apps, qui permet de créer et déployer des applications de données et d’IA avec rapidité et sécurité.
> Agent Bricks, qui aide les organisations à créer et mettre à l’échelle facilement des agents de haute qualité sur leurs données.
Red Hat rachète Chatterbox Labs, un spécialiste des garde-fous de sécurité pour l’intelligence artificielle générative. Le montant de l’opération n’est pas communiqué.
Fondée en 2011 et basée à Londres avec un bureau à New York, Chatterbox Labs propose des capacités de test de sécurité automatisées et personnalisées, fournissant des métriques de risque quantitatives.
La technologie de Chatterbox Labs s’articule autour de trois piliers :
AIMI pour l’IA générative : des métriques de risque quantitatives indépendantes pour les grands modèles de langage
AIMI pour l’IA prédictive : validation de toute architecture IA sur des critères clés incluant robustesse, équité et explicabilité
Garde-fous : identification et correction des invites non sécurisées, toxiques ou biaisées avant la mise en production des modèles
Sécuriser l’IA agentique de nouvelle génération
L’approche est agnostique des modèles, permettant de valider données et modèles quelle que soit leur origine. Selon Steven Huels, vice-président de l’ingénierie IA et de la stratégie produit chez Red Hat, l’intégration de Chatterbox Labs permettra de fournir une plateforme open source complète où la sécurité est intégrée dès le départ.
Chatterbox Labs a mené des travaux sur la sécurité holistique des agents IA, incluant la surveillance des réponses des agents et la détection des déclencheurs d’action des serveurs MCP. Ces travaux s’alignent avec la feuille de route de Red Hat pour le support de Llama Stack et MCP.
Cette acquisition est la deuxième opération de Red Hat dans le domaine de l’IA en un an. En novembre 2024, l’éditeur avait racheté Neural Magic, spécialisé dans l’optimisation des modèles d’IA pour processeurs et GPU standards. Cette acquisition a été finalisée en janvier 2025.
Chez les principaux fournisseurs de bases de données cloud, il n’est plus si rare que des produits se chevauchent.
La synthèse du dernier Magic Quadrant dédié à ce marché en témoigne. La majorité des « leaders » (5 sur 9) ont droit à une remarque à ce sujet :
Alibaba Cloud
Chevauchement entre AnalyticDB et Hologres (analytique) comme entre DMS et DataWorks (intégration de données).
AWS
Grand choix de SGBD et d’options d’intégration… au prix de chevauchements et de conflits.
Google
Plusieurs solutions pour Postgre (Cloud SQL, AlloyDB, Spanner) entre lesquelles il faut faire la balance.
IBM
Chevauchements sur la partie entrepôt de données, entre les offres Db2 Warehouse, Neterra watsonx.data.
Microsoft
Concurrence entre Azure Synapse, Microsoft Fabric et Azure Databricks.
Gérer les coûts reste un défi
Autre sujet largement partagé parmi les « leaders » : la gestion des coûts.
Elle est difficile chez AWS faute de tarification unifiée entre services.
Elle l’est aussi pour beaucoup de clients de Databricks, malgré des avancées sur l’outillage FinOps.
Chez Google, elle a tendance à se complexifier avec l’intégration de nouvelles fonctionnalités.
Concernant Oracle, la clientèle se plaint toujours des prix et de la difficulté de contractualisation, même si la tendance s’atténue avec le passage au cloud et son modèle de facturation à l’usage.
Concernant Snowflake, Gartner a un jugement plus spécifique : le côté « user-friendly » est susceptible de favoriser le développement d’un état d’esprit « black box », et par là même de limiter la capacité à optimiser les workloads.
Plusieurs de ces fournisseurs avaient déjà été épinglés à ce sujet il y a un an, dans l’édition précédente de ce Magic Quadrant.
Databricks, à cause de la difficulté à prédire les coûts avec le modèle fondé sur des unités de consommation.
Google, parce que le suivi des dépenses pouvait se révéler délicat, a fortiori lorsqu’on interfaçait aux bases de données des services fondés sur des unités de consommation.
Oracle, perçu, de par son historique, comme un fournisseur aux offres onéreuses.
Alibaba, chez qui la variété des modèles de pricing, combinée à une facturation découplée pour certaines ressources au nom de la flexibilité, pouvait s’avérer difficile à maîtriser.
20 fournisseurs, 9 « leaders »
D’une année à l’autre, les critères à respecter ont peu évolué. Il fallait toujours, entre autres, gérer au moins un cas d’usage parmi :
Transactionnel
Transactions « légères » (gros volumes à haute concurrence et basse latence)
Gestion d’état d’applications
Data warehouse
Lakehouse
Analyse d’événements
Une fois encore, Gartner n’a évalué que les offres managées, fournies en cloud public ou privé. Il n’a pas pris en compte les bases de données hébergées sur du IaaS.
Les 20 fournisseurs classés sont les mêmes que l’an dernier. Et les 9 « leaders » d’alors le sont restés. Dans l’ordre alphabétique : Alibaba Cloud, AWS, Databricks, Google, IBM, Microsoft, MongoDB, Oracle et Snowflake.
Sur l’axe « exécution », reflétant la capacité à répondre à la demande, la situation est la suivante :
Rang
Fournisseur
Évolution annuelle
1
AWS
=
2
Google
=
3
Microsoft
+ 1
4
Oracle
– 1
5
Databricks
=
6
Snowflake
+ 1
7
MongoDB
– 1
8
IBM
+ 2
9
Alibaba Cloud
– 1
10
InterSystems
– 1
11
Huawei Cloud
=
12
SAP
=
13
Teradata
=
14
Cloudera
=
15
Couchbase
+ 3
16
SingleStore
+ 1
17
EDB
+ 3
18
Redis
– 3
19
Neo4j
– 3
20
Cockroach Labs
– 1
Sur l’axe « vision », reflétant les stratégies :
Rang
Fournisseur
Évolution annuelle
1
Google
=
2
Databricks
+ 3
3
Microsoft
– 1
4
Oracle
– 1
5
AWS
– 1
6
Snowflake
+ 2
7
Alibaba Cloud
+ 3
8
IBM
– 1
9
SAP
– 3
10
Teradata
– 1
11
MongoDB
=
12
Cloudera
=
13
InterSystems
+ 2
14
Neo4j
=
15
Huawei Cloud
+ 1
16
EDB
+ 4
17
Couchbase
=
18
SingleStore
=
19
Redis
– 6
20
Cockroach Labs
– 1
Alibaba Cloud, distingué pour son approche « data + IA »…
Les principales offres d’Alibaba Cloud sur ce marché sont PolarDB et ApsaraDB (transactionnel), AnalyticDB et MaxCompute (analytique), Tair et Lindorm (clé-valeur).
L’a dernier, le groupe chinois avait été salué pour sa présence sectorielle importante et différenciée, le développement de son écosystème de partenaires et le poids de sa communauté open source.
Cette année, Gartner apprécie la tarification, jugée attractive. Ainsi que la fiabilité de l’architecture serverless. Désormais étendue à tous les SGBD, elle se distingue par son architecture découplant calcul, mémoire et stockage en environnement hybride. Bon point également pour l’approche « data + IA » qui permet de développer et de déployer des applications en n’utilisant que des technologies d’Alibaba Cloud.
… mais pas pour la configuration de PolarDB
L’an dernier, Gartner avait pointé, au-delà de la gestion des coûts, le risque géopolitique associé à Alibaba Cloud. Ainsi que la disponibilité encore limitée de ses servies hors de l’Asie (moins de régions et de zones de disponibilité que la concurrence).
Cette année encore, la faible présence hors Asie est signalée. Elle peut se traduire par un moins grand nombre d’intégrations d’outils tiers et de ressources en anglais (documentation, formation, support). Attention aussi à la configuration de PolarDB, jugée complexe par les nouveaux utilisateurs, notamment sur l’équilibre coût/performance et la gestion du stockage multicouche. Il faut y ajouter les chevauchements de produits sus-évoqués.
AWS a un catalogue d’une ampleur sans égale…
Aurora, Redshift, DynamoDB et SageMaker font partie des principaux produits d’AWS sur ce marché.
L’an dernier, Gartner avait salué la couverture fonctionnelle d’AWS et sa capacité à créer du liant entre ses solutions. Il avait aussi noté l’exhaustivité des partenariats et de la présence géographique.
Ce dernier point vaut toujours et s’assortit d’un bon historique de disponibilité de l’infrastructure ainsi que d’une approche « proactive » de dialogue avec le client pour l’optimisation des coûts. AWS a, plus globalement, un catalogue d’une ampleur sans égale sur ce marché, avec SageMaker comme point central de gouvernance data/IA.
… mais des dépendances pour l’orchestration hybride
L’intégration entre les services d’AWS peut être complexe, avait souligné Gartner l’an dernier. Le cabinet américain avait aussi constaté que la prise en charge des déploiements hybrides/multicloud était limitée malgré la disponibilité de connecteurs natifs et le support de moteurs comme Spark (les clients tendent à utiliser des orchestrateurs tiers, avait-il expliqué).
Ce dernier constat est toujours d’actualité : beaucoup de clients dépendent de solutions tierces pour l’orchestration hybride/multicloud. S’y ajoutent les deux éléments sus-évoqués : gestion des coûts difficile et chevauchements entre produits.
Databricks, rapide pour innover…
Outre Data Intelligence Platform (qui inclut Unity Catalog), Databricks propose du data warehouse avec Databricks SQL, du transactionnel avec Lakebase, ainsi que de l’intégration et de l’engineering avec Lakeflow.
L’an dernier, Gartner avait salué les investissements dans la GenAI (dont l’acquisition de MosaicML), traduits par le développement de ses propres LLM. Il avait aussi donne un bon point au catalogue Unity (qui venait d’être basculé en open source) et au format Delta Lake (concurrent d’Iceberg).
Cette année, Databricks est salué pour sa « vision lakehouse », bien qu’il ne soit plus seul sur ce marché. Il l’est aussi pour sa cadence d’innovation, entre la composante Agent Bricks (qui a reçu des fonctionnalités importantes presque tous les mois), l’acquisition de Tabular (qui a accompagné la prise en charge d’Iceberg sur tout le portefeuile) et l’introduction de capacités low code dans Lakeflow. Bon point également pour l’engagement sur des standards ouverts (Delta Lake, Iceberg, Spark, Postgre…) qui favorisent la portabilité.
… mais pas si simple à prendre en main
L’an dernier, Gartner avait pointé le manque d’intuitivité de l’UI, qui changeait fréquemment tout en manquant de documentation et de capacités low code. Il y avait ajouté l’aspect FinOps, sus-évoqué.
Cette année, le cabinet américain met un bémol à la logique d’ouverture : certains clients s’inquiètent d’un éventuel verrouillage au niveau de l’orchestration et de Delta Live Tables (devenu Lakeflow Spark Declarative Pipelines). Il souligne par ailleurs la tendance des clients à juger que l’usage de la solution exige un haut niveau de compétence technique. En parallèle, le sujet FinOps reste valable (voir ci-dessus).
Google, bien positionné sur l’IA…
Entre autres produits positionnés sur ce marché, Google a Spanner, BigQuery, AlloyDB, Cloud SQL, Firestore, Memorystore et Bigtable.
L’an dernier, Gartner avait salué les contributions open source (à PostgreSQL en particulier). Il avait fait de même pour les avancées dans la GenAI (intégration de Gemini + support transversal de la recherche vectorielle via LangChain) et pour la fondation data/IA unifiée avec Dataplex pour la gouvernance.
Cette fondation data/IA a à nouveau droit à un bon point ; dans les grandes lignes, pour les mêmes motifs. Gartner note plus globalement la capacité de l’offre SGBD de Google à couvrir les cas d’usage dans l’IA agentique. Et apprécie en particulier l’exhaustivité des modèles de données pris en charge par Spanner (relationnel, clé-valeur, graphe, vectoriel).
… mais moins sur le partage de données
Le réseau de partenaires doit encore se développer, avait estimé Gartner l’an dernier. Il avait aussi pointé l’aspect FinOps et souligné que Google proposait moins d’options que la concurrence pour l’intégration native d’applicaitons et le master data management.
Cette année, outre la gestion des coûts et les chevauchements sus-évoqués, un point de vigilance va à la marketplace de données et aux capacités de partage. Elle se révèlent moins avancées que chez certains concurrents, malgré des améliorations sur les clean rooms et l’interopérabilité entre clouds.
IBM étend sa présence multicloud…
Les principaux SGBD cloud d’IBM sont Db2 (transactionnel + analytique) et watsonx.data (lakehouse).
L’an dernier, Big Blue s’était distingué sur sa stratégie sectorielle (solutions spécifiques adaptées sur la gouvernance, la sécurité et la conformité). Ainsi que sur sa capacité à combiner les expertises en open source et en data management au service des déploiements hybrides. Son offre est bien adaptée aux applications critiques, avait ajouté Gartner.
Cette année encore, la stratégie sectorielle est saluée. L’extension de la présence cloud l’est aussi (mise à disposition de Db2 chez les hyperscalers et acquisition de DataStax, qui a une forte présence multicloud). Bon point également pour l’approche « bien définie » d’IBM concernant l’intégration des SGBD dans les frameworks de data management.
… mais a toujours du mal à faire passer son message
IBM a du mal à se différencier dans la communication, par ailleurs pas uniforme entre équipes commerciales, avait expliqué Gartner l’a dernier. Il avait aussi rappelé que le déploiement géographique de l’offre n’atteignait pas encore celui des autres hyperscalers.
Les difficultés de communication restent d’actualité, occasionnant un certain manque de notoriété sur le segment. En parallèle, IBM demeure perçu comme un vendeur « legacy », ce qui est susceptible de détourner certains acheteurs. Gartner y ajoute, comme sus-évoqué, les chevauchements entre certains produits.
Une offre exhaustive chez Microsoft…
Entre autres produits, Microsoft évolue sur ce marché avec Azure SQL Database, Azure Database pour PostgreSQL et MySQL, ainsi qu’Azure Cosmos DB.
L’an dernier, Gartner avait salué l’exhaustivité de l’offre et le niveau d’intégration avec les autres services Microsoft. Il avait aussi apprécié les possibilités d’usage de l’IA pour le data management. Et les avancées sur la gestion du multicloud, exemplifiées par l’interconnexion Azure-Oracle comme par les « raccourcis » dans OneLake pour les analyses fédérées.
Bon point cette année encore pour l’exhaustivité de l’offre, qui « gère presque tous les modèles de données et cas d’usage sectoriels ». L’engagement de Microsoft sur PostgreSQL est également salué. Comme les innovations sur la partie IA (embeddings in-database, indexation de vecteurs, jonctions entre Copilot et Fabric…).
… mais une offre Fabric qui manque encore de maturité
Le chevauchement de certaines offres avait déjà été signalé l’an dernier, en sus de craintes des clients sur la pérennité d’Azure Synapse Analytics et d’Azure Database face à Microsoft Fabric. Ce dernier manquait encore de maturité, avait expliqué Gartner : les capacités d’intégration, de gouvernance et de gestion des métadonnées étaient moins « robustes » que chez d’autres « leaders ». Le déploiement pouvait par ailleurs se révéler complexe, en particulier pour le DR, la sécurité et la gestion des coûts.
Outre le chevauchement de certains produits, Gartner pointe à nouveau le manque de maturité de Microsot Fabric. Les inquiétudes des clients touchent autant aux fonctions data warehouse que gouvernance, entre souveraineté, dimensionnement des ressources, prix, gestion des métadonnées et data quality. Attention aussi aux investissements consentis pour intégrer le transactionnel dans Fabric : sur le court terme, ils peuvent engendrer des enjeux de performance.
MongoDB demeure un standard pour le modèle document…
Outre son édition communautaire et son produit sur site (Enterprise Advanced), MongoDB propose son SGBD Atlas chez AWS, Google et Microsoft.
L’an dernier, Gartner avait salué une offre « bien considérée » pour ses capacités de traitement à haut volume, son élasticité et la flexibilité du schéma. Il avait aussi souligné la souplesse et la rapidité d’implémentation, contribuant à la popularité auprès des développeurs.
Ce dernier élément vaut toujours et engendre un vivier de compétences d’autant plus grand. S’y ajoute la richesse des options de déploiement, accentuée par un programme de partenariats jugé « robuste ». MongoDB est plus globalement parvenu à établir une forme de standard pour qui souhaite un modèle orienté document.
… mais manque d’un storytelling sur la convergence transactionnel-analytique
Si MongoDB associe transactionnel et analytique, son offre se limite à du non relationnel, avait signalé Gartner l’an dernier. La concurrence s’accentue de la part de fournisseurs de SGBD qui incluent l’approche document en plus d’autres modèles, avait-il souligné ; sans compter ceux qui proposent une compatibilité MongoDB.
Cette remaruqe sur la concurrence accrue reste valable. Le cabinet américain y ajoute la courbe d’apprentissage nécessaire pour prendre en main le modèle MongoDB. Et le manque d’un storytelling complet l’intégration du transactionnel et de l’analytique.
Oracle, salué pour sa richesse fonctionnelle…
Autonomous AI Lakehouse, Autonomous JSON Database et Exadata Database Service font partie des SGBD cloud au catalogue d’Oracle.
L’an dernier, Gartner avait salué l’exhaustivité de l’offre (fonctionnalités + support de modèles modèles de données et de l’architecture lakehouse). Ainsi que le niveau de gestion du multicloud (offres Database@ + interconnexion avec les principaux hyperscalers) et la capacité à diffuser rapidement des nouveautés (GenAI, low code, consensus RAFT).
Cette année encore, la richesse fonctionnelle est saluée (bases de données distribuées, recherche vectorielle, framework agentique…). La diversité des options de déploiement l’est aussi. Comme l’adéquation de l’offre d’oracle aux applications critiques.
… mais peu adopté pour les déploiements lakehouse
Oracl reste perçu comme onéreux et a du travail pour « cloudifier » sa base client, avait noté Gartner l’an dernier. Il avait aussi appelé les acheteurs à s’assurer de bien interpréter l’approche « une base de données pour tout » et ce qu’elle impliquait en matière de livraison de fonctionnalités.
Cette dernière remarque est reconduite : vigilance sur cette approche, qui s’oppose aux architecture combinant les SGBD et les systèmes de data management. La question du prix – sus-évoquée – reste sensible et les clients continuent à prioriser des produits concurrents pour les déploiements lakehouse.
Snowflake a amélioré sa couverture fonctionnelle…
L’an dernier, Snowflake s’était distingué par son UI adaptée à divers profils d’utilisateurs, sa prise en charge de multiples formats sur la couche de stockage et l’extension de l’architecture lakehouse avec Iceberg et Polaris.
Cette année encore, Gartner donne un bon à l’UI. Il relève aussi l’extension fonctionnelle de l’offre (data engineering avancé via Openflow, ML/IA avec Snowpark et Cortex AI, support de Postgre apporté par l’acquisition de Crunchy Data). Et l’amélioration de la scalabilité avec les entrepôts de génération 2 (meilleur rapport qualité-prix que la gen 1 pour les workloads complexes).
… mais reste focalisé sur le batch et l’analytique
L’an dernier, Gartner avait pointé une prise en charge limitée des scénarios hybrides. Il y avait ajouté la complexité dans le partage des données entre organisations utilisatrices de Snowflake et les défis d’usabilité que posait l’intégration avec le stockage sur site via les tables externes.
Ces deux derniers aspect demeurent. D’une part, la performance n’est pas la même avec les tables externes qu’avec le stockage natif ou les tables Iceberg. De l’autre, sur le partage, il est nécessaire de bien planifier des éléments tels que les permissions, le repartage et les restrictions régionales. Gartner y ajoute l’aspect FinOps (voir ci-dessus). Et le fait que l’architecture est focalisée sur le batch et l’analytique plutôt que sur le transactionnel ou le temps réel (même s’il existe les tables hybrides et une intégration avancée de PostgreSQL).